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Abstract

The class of harmonic superconformal maps from Riemann surfaces into real hyperbolic spaces
is considered and harmonic sequences are constructed for these maps. They are used to obtain
a rigidity result for such maps and to construct primitive lifts into an auxiliary flag s@acet
is also shown that superconformal harmonic maps it and H2"~1 are locally described by
2D-affine Toda fields associated to the gain(2m +1, C), o), wheres is the involution determined
by the non-compact real foraw(1, 2m). Applying the Adler—Kostant—Symes integration scheme
to appropriate loop algebras we construct finite type primitive map$? — §,,, and harmonic
superconformal mapg : H2 — H?" and hence finite type Toda fields. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Inrecent years, there has been a great deal of interest in the study of harmonic maps from
surfaces to Riemannian symmetric spaces of compact type. The fact that the harmonic map
equation for surfaces in these spaces is a kind of completely integrable system, was the
starting point for the construction of harmonic maps from compact surfaces of genus one
(i.e. two-tori) in compact symmetric spaces and Lie groups using ideas coming from soliton
theory. There exist now a well established theory exposed in many articles, e.g. [4,5,7], to
name only the most relevant to us.

When the target is a symmetric space of non-compact type, the integrable character of the
harmonic map equation of surfaces still prevails as was proved by Bobenko [1] for surfaces
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in R" and H". However, the maximum principle for (sub)harmonic functions implies that
there are no non-constant harmonic maps from compact surfaces into these spaces.

From the point of view of Mathematical Physics the interest in harmonic maps of surfaces
stems from its relation witly-models. A classical solution of@-model is nothing but a
harmonic map into some Riemannian manifold. The study-oafiodels on non-compact
(pseudo)-symmetric spaces arise for example in solid state physics and has many applica-
tions, see for instance [12] and the bibliography therein.

The goal of the present article is to begin the study of harmonic superconformal maps
from non-compact connected Riemann surfaces into the the+diatensional hyperbolic
spaceH" of curvature—1. This class of maps can be regarded the natural counterpart
of the harmonic superconformal maps of surfaces into Euclidean spkiemansidered
in [6]. Roughly speaking, a superconformal harmonic map is one whose harmonic se-
guence satisfies certain “orthogonality relations”. In [6] a well-known soliton system called
2D-affine Toda field equations, were used by Bolton et al. to describe it superconformal
harmonic maps of surfaces in@P" andS”. Leto denote the conjugation authomorphism
of so(2m + 1, C) respect to the non-compact real fosn(1, 2m). Along the paper we shall
see that a 2D-affine Toda field associated with the@ai2m + 1, C); o), locally describes
the geometry of harmonic superconformal maps of surfacesiftband H2" 1,

The paper is organized as follows. In Section 2, we recall some standard linear algebra
and introduce some notation. We derive the harmonic map equation for conformal maps of
surfaces intaH”. It is a semilinear elliptic equation which, as consequence of the maxi-
mum principle for subharmonic functions, it has only constant solutions if the domain is a
compact surface. Hence, only non-compact surfaces are interesting. A brief Lie-algebraic
introduction to generalized 2D-affine Toda field equations is also given.

In Section 3, we study complex vector subbundiesf the trivial bundleM x C'*1 — M
over a Riemann surfad¥ satisfyingE N EL« = {0} fiberwise, i.e. they are non-degenerate
respect to the pseudo hermitian meigiez, w) = —zowo + Y _q zxwx on C* 1 We
show that these bundles have simple metric connections and hence can be equipped with
a compatible holomorphic structure via the Koszul-Malgrange theorem [8]. Within this
framework, we consider harmonic maps. M — H" for which their consecutive Hopf
differentialsn; = h°((3Y) f/3z7), 3V f/3z7))dz?/, j = 1, ..., m — 1 vanish, except
the last onen,,, wherem = [(n + 1)/2]. The vanishing of the first Hopf differential
n = he(f., f.)dz? is equivalent to conformality off, while the vanishig ofj; is just
conformality of the second fundamental form pfand so on. These conditions allow to
generate inductively an ordered sequence of non-degenerate line subburdles@:

Low, L1y, ---» L-1,Lo, L1, L2, ..., Ly, Wwith L;j=L_j,

satisfying orthogonallity relations; 1, L;, 0 < |i—j| < 2m.Where the pseudohermitian
metric ¢ is positive onL; for |j| = 1, ..., m and negative orlo. Besides there is a
Gramm-Schmidt type algorithm which on every local cliélitz) generates a meromorphic
sectionf; of L; such that); = h°(f;, fj)dzzf. Our approach is conceptually analogous
to that of [3,8], where (euclidean) harmonic sequences are constructed for harmonic maps
of surfaces into compact Grassmanians and projective spaces.

Applying this construction we show in Proposition 3.4 that a harmonic superconformal
mapf : M — H?" which lies fully into a totally geodesiy?"~1, has a periodic sequence
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{L;},i.e.Ljyom = Lj, j € Z. This happens also when the target is the standard sphiere
(cf[3]). In Theorem 3.6, we show that a harmonic superconformal ghap/ — H2" is
determined up to ambientisometries by the induced mgtricand thenth Hopf differential
N -

In Section 4, the geometry of the harmonic sequence is used to construct primitive lifts
of superconformal harmonic mags: M — H?2" into an auxiliar flag domai,,. This is
a non-compact analog of some twistor constructions for harmonic maps into spheres and
projective spaces (cf. [6]). Also special adapted frames or Toda frames for super conformal
harmonic mapsf : M — H?" are considered and the 2D-affine Toda field equations
associated with the paiso(2m + 1, C), so(1, 2m)) are shown to be equivalent to the
integrability conditions for the existence of a Toda frame.

Finally, in Section 5 after introducing some standard Loop-group machinery, we use
the Adler—Kostant—Symes integration scheme to construct “finite type” solutions of the
2D-affine Toda field associated teo(2m + 1, C), o). Here, in contrast with the compact
target caseY", CP" etc.) the solutions of the corresponding Toda equations are only local,
i.e. they are not defined on the whole complex plane. Thus, modulo conformal maps of the
plane, we obtain a recipe for the construction of finite type superconformal harmonic maps
and primitive maps of the Poincare di&t. A related question is under what conditions
a superconformal harmonic (respective primitive ) map frEf is of finite type. This
problem, however, seems to be more difficult and will be considered later.

2. Preliminaries

The n-dimensional Hyperbolic spacd” is the simply connected real space-form of
constant sectional curvaturel. It can be realized as the unbounded sheet of the hyperboloid
hix,x)=-1in R’{*l containing the poinégg = (1,0, ..., 0), wherea(x, y) = —xoyo +
Y ko1 XkVk. X,y € R’i"’l.

The ambient Lorenzian inner producinduces onH" a positive definite metric denoted
with 4 and the Lie groug O, (1, n) acts transitively ol by isometries. In this way " be-
comes an homogeneous symmetric space of non-compact type. Taki§@,tie n)-orbit
of eg we have the representatiéf’ = SO, (1, n)/{1} x SO(®n).

For later use, we introduce the complex bilinear extensioh wfC*** by h¢(z, w) =
—zowo + Y_p_1 zkwk. Definingq (z, w) =: h®(z, w), we obtain the Hermitian extension of
hto C**1 as well, hence (x, y) = h(x, y) Vx,y € R{ ™

Recall that a matri¢¥” is in O(1, n) iff FJIFTJ~1 = I, whereJ = diag(—1, 1, ..., 1).
Thus, X is in so(1, n) = Lie(O(1, n)) iff XTJ + IX = 0. Henceso(1, n) is the set of
matricesX of the form

(0 b "
X_(bT A>’ beR" Aeson)

On the other hand, the map
_ 0 ib .
X WXL=( 4 , | L=dagil....1 (2.1)
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allows to think ofso(1, n) sitting insideso(n+ 1, C). Henceso(1, n)C =so(n+1,C),and
the conjugation authomorphism: so(n+1, C) — so(n+1, C) respectto the non-compact
real formso(1, n) is given by

—m

0 m _ 0 —m
son+1,C) > X = >oX)=J-X-J= _ (2.2)
T A ml A
Notice that the mag — LFL embeds @1, ) into O(n + 1, C).

2.1. The harmonic map equation

Let M be a Riemannian manifold anfl : M — H" a smooth map. Then its second
fundamental form is given by

B(U, V) =UVf—h(Uf, Vi) f —df(V}¥V), U,V eXM)

The tension field off is 7 (f) = tr 8.

If M is a Riemann surface (i.e. an oriented 2D manifold equipped with a conformal
equivalence class of Riemannian metrics), ghdM — H" a non-constant map, thefi
is called weakly-conformal i€( £,, f,) = O for every complex local coordinateon M. A
non-constant weakly-conformal harmonic majs called a minimal branched immersion
in the literature. Unless otherwise stated we will work with conformal nyapa/ — H"
such that ¢y # 0Vx € M.

In the conformal case, the induced metgic= f*h can be written in a local complex
coordinate(U, z) asg = p2dz - dz for some smooth positive functiop : U — R.
Equivalently,

q(fo, £)=0 and q(f:, f.) = p? (2.3)

Proposition 2.1. Harmonic map equatiarlet f : M — H" be a conformal map from a
Riemann surface/. Thenf : M — H" is harmonic and hence minimal if and only if on
every complex chaxt, U) € M the following equation holds

Jz=q(fz, ) f (2.4)

Proof. Let X be a tangent vector field afi”, then the Levi-Civita connectioW” on H"
is given by

VEY=X.Y—h(X,Y)x foreveryY e X(H")
From this, we compute the second fundamental forryi,of
B(U, V) =UVf— h(Uf, VE) f —df(VMV) U,V eXM)

Respect to a complex chart we haygf.|[*/dtrp = B(3/dz,9/9z), thus, (2.4)
follows. O
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The maximum principle for sub-harmonic functions, imply that the only harmonic maps
from a compact Riemann surfagé to H" are the constant maps. Therefore, we will treat
only non-compact Riemann surfaces.

2.2. 2D-affine Toda fields

They are systems of elliptic PDEs which exist in association with complex simple Lie
algebras. To introduce these equations we recall some standard facts of Lie algebra theory.

Let g be a complex simple Lie algebrg,a Cartan sub algebra amtl = A(gC, §))
the corresponding root system. Choose a set of positive tddtsc A, and letr =
{a1, ..., a;} C AT be the corresponding set of simple roots, where: dim}. Fix a
maximal abelian subalgebtac § so thatt¢ = .

Being g simple, one has a distinguished maximal raoand we sett™ = 7 U {—u}.
Thus,7* labels the sets of nodes of the extended Dynkin diagram ®he generalized
2D-affine Toda field system associateg s defined by the following system ef= dim§
non-linear PDEs.

22:= Y do€PDH, (.7 €it (2.5)

aemr*

whereH, € itis the dual ofx respect to the Killing form ofj, andd,, are real arbitrary
constants. Solutions of (2.5) are called Toda fields.

If o denotes the involution ofo(2m + 1, C) determined by the non-compact real form
s0(1, 2m), we shall see that a 2D-affine Toda field associated to théquetm + 1, C); o),
locally describe the geometry of harmonic superconformal maps from a Riemann surface
M into H?" andH?" 1,

3. Harmonic sequences

Let T — CP" the tautological line bundle, i.e. the complex line bundle whose fiber at
the pointx € CP" is the complex linex itself. By abuse of notation we denote also by
T the restriction taCH" = {[v] € CP" : ¢(v, v) < 0}. The hermitian ambient metrig
induces onl" a negative definite hermitian metrgg: and Hom(T', T+) is equipped with
the corresponding tensor product hermitian holomorphic structure. For such a structure
there is a compatible connectiadd on Hom(T, T1) induced by the flat connection on
CH" x C'*1 — CH" in the following way:

(Dxo)s =npi(X(0 os)) —o(nr (X)), X eTM,

wheres € C*®(T) is a local smooth section df, o is a smooth section of Ho(, T-),
andr,. is the projection onto the-orthogonal complemerft+ (note thatr N 7+ = {0},
henceyr;1 andrr are well defined). There is also a connection-preserving biholomorphic
isomorphism:

TEOCH' LHom(T, TY), y(X)s =71 (X9, s€ C®(T), X € TM (3.1)
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which satisfies,

C
ar ®qri(yz, yw) = =58z, w), z,we T10OCH

wherec < 0 is the holomorphic sectional curvature of the Kahler metram CH". There
is an equivalent description of the geometryGR; = {[v] € CP" : ¢(v,v) > 0}. For
details, we refer the reader to [8,9].

A vector sub bundleZ ¢ M x C"*!is non-degenerateespect tqg, if E, N Exl" =
{0} Vx € M. WhenE is a line subbundle, i.e. complex 1D, thé&nhis non-degenerate iff
q(v,v) # 0 for every 0# v € E. Hence, when the basd is connected, the induced
metric g is always definite with the same sign an. Consequently, we call a line sub-
bundleE ¢ M x C'*1 positiveor negativeif ¢ is positive definite or negative definite,
respectively onv.

Recall now the bijective correspondence between smooth mapd/ — CP" and
smooth complex line subbundles &f x C**1 given by

¢ < Eo=¢™(T) 3.2)
Under (3.2), a smooth map: M — CH" corresponds to a non-degenerate negative line
subbundleZ ¢ M x C"*. Analogously a smooth map: M — CPj corresponds under
(3.2) to a non-degenerate positive line subburille M x C'*+1.

Non-degenerate vector subbundigesc M x C'*! are useful since they have metric-
compatible connections. In fact, for such a vector sub bundle, there are unambiguously
defined orthogonal projectors;, : C'*! - E,,x € M, hence, a well defined connection
Vg =mgod,ie.

(VE)xs = g (X9, s€C®(E),XeTM

Note that the flat connection ad x C"*1 — M is given byVys = Xsfors : M — C'*1
andX € TM.

Given a complex vector bundlé over a Riemann surface with a metric-compatible
connectionVv, the well-known theorem of Koszul-Malgrange [8] guarantees the existence
of a unique holomorphic structure #hcompatible withv. A local sectiors is holomorphic
respect to this structure if and onlyViys = O for everyX e TOD .

Inwhat follows, we shall consider every non-degenerate vector sub bandla/ x C*+1
equiped with the induced metrig: and the unique holomorphic structure determined by
Ve = ng o d, via the theorem of Koszul-Malgrange. Hence, a local segtianC*°(FE)
is holomorphic if and only if(d/dz)s is g-orthogonal toE for any complex coordinate
(U, z) on M. Respect to a complex coordinate we den®g) s/5.) and(Vg)s/92) simply
by (Vg)', and(Vg)”, respectively. Beindg: is non-degenerate, there is also a well-defined
operatorAr : TM® E — E= given by

Ap(X ®s) = i (X9, s € CP(E) (3.3)

Notice that with our previous definitiondz = V.. According to the splitting of the

complexified tangent bundi@MC into (1,0) and (0, 1) types, the second fundamental
form decomposes relative to a complex cartV) asAg = A’ + A’,, where

/ a 4 8
Ap(s) =mgL (3_zs> , Ap(s) =mgL (8—Zs> (3.4)
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Remark 3.1. We shall regardi’, andA’, simply as bundle maps — E*. This of course
presupposes working on a specific complex chart but, it is routine calculation to check that
all the constructions that follow, are independent of the choice of such a chart.

Lemma 3.1. Let E be non-degenerate vector subbundlemfx C*+1. Then(A)* =
_A// .
EL

Proof. Let s; ands, be smooth local sections @ and E-+, respectively. Then, respect
to any complex coordinate, 0 = ¢(9,s1, s2) + g(s1, 9752). Hence,q(A/E(sl),sg) =
—q(s1, A’él(sz)) and the Lemma follows. a

Now lety : M — CP" be the uniqgue smooth map determined by a non-degenerate line
sub bundleE. Then, if E is negativeyp factors throughtCH" and if E is positiveg factors
throughCP;, respectively.

Proposition 3.2. In either casep is a harmonic map if and only i, is a holomorphic
section oHom(E, E1). Equivalently ¢ is harmonic if and only ifA7, is antiholomorphic.

Proof. Let us prove the statement whénis negative since the positive case is analogous.
Lety : M — CH" be the corresponding map. By definitipnis harmonic if and only if
tr(V dp) = 0, whereV is the connection on HoM, TCH") determined by the respective
connectionsV™ andv¥ = ¢*(VCH"). Extending @ to a complex linear map fromM¢

to TCH?, it follows thatg is harmonic if and only if on any complex coordindte U),

V§. dp(d;) =0 (3.5)
or, in an equivalent way,

Vi de(dz) =0 (3.6)
Up to identifications (3.4) and (3.1) we gei@:) = A}gw anddp(d,) = A’EW.The pull-back
connectionv¢ corresponds under (3.1) ¥g. Theng is harmonic if and only ifA’; is a

holomorphic section of HoE, E1). This is equivalent t6/; A%, = 0. In other wordsgp
is harmonic if and only if

/EovgzngoA’E (3.7)
a
For a smooth mag : M — H" definegg : M — CP" by go(x) = [f(x)], i.€. po(x) iS
the complex line irc"*+1 determined byf (x). Sinceh(f, f) = —1, we have
qOfirf) =—IM? <0, VireC*
Hence o factors through the (open) sub manifdéiti” c CP".

Proposition 3.3. Let f : M — H" be a conformal map. Thefi is harmonic iffgg is
harmonic.



146 E. Hulett/Journal of Geometry and Physics 42 (2002) 139-165

Proof. Let
Lo={(x,v) € M x C""|v € go(x)} = ¢3(T) ¢ M x C'*1

Thenh(f, f) = —1 impliesq(f;, f) = q(f;, f) = 0 for any complex coordinate, thus,
V’L/O(f) = 0. This says thaf is a (global) holomorphic section éf. On the other handf
being conformal harmonic and non-constant, it satisfies= ¢ (f;, f;) f on every complex
chart(z, U). This clearly implies tha‘t7ZL oA/Lo(f) =0. Thus,A/Lo is holomorphic, hence,
o is harmonic. 0

Conversely, ifpg = [ f]is harmonic, then (3.7) holds, and sinegf, f) = —1, one gets
VZg o A’Lo(f) = 0. That is,V’L’OL(fZ) = 0. Hence,f;; € Lo, and there is a (local) complex

function A such thatf,; = Af. From this, we conclude that: = ¢(f;, f;)f, SO isf
harmonic. O

Let f : M — H" be a non-constant conformal harmonic map, then by the Proposition
3.3 f is a global holomorphic section @fy andA/Lo, A/L/0 are non-vanishing holomorphic
and antiholomorphic sections of Haify, Lol), respectively. The zeros «Af’Lo andA{0 are

isolated and there are unique line sub bundles (extending through the zgrés); C Lé
satisfying

Im(AL,) € L1, Im(A7,) S L1

Hence,L; andL _; are positive line sub bundles &f x C"*tlsuchthat; = L_;. For, on

any complex chart : U — C, the complex derivativeg, and f; are local smooth sections

of L1 andL_1, respectively and (outside possibly of a closed subset of isolated points of
U),

‘I(va fZ) = 6](f27 ff) > 0.

In particular,L1 and L _; are non-degenerate and they can be equipped with holomorphic
structures determined By, andV,,_, via the theorem of Koszul-Malgrange. Moreover,
Lo L Li,andLg L L_q because of

h(f. f)==1h(fz. /)=0, h(fz. /)=0 (3.8)

The orthogonality ofL1 and L _; follows from the vanishing of the first complex Hopf
quadratic differentiahy =: h°( f;, f.) dz2.

Summing up these simple facts, we conclude ffiat,, Lo, L1} is a set of mutually
g-orthogonal non-degenerate line sub bundles satisfying

Lo= Lo, Li=L_1 (3.9

Lety; andp_1 : M — CP" be smooth maps which are in one-to-one correspondence with
Ly andL_1, respectively. Then by our preceeding consideratiarendy_1 factor through
the (open) sub manifol@P; c CP".

Being both inclusiong : L1 — Lé andj : Lo — Lf antiholomorphic, so is the
composition(j o Azo oi): L1 — Lf. But this is preciseI)A/L’l, thereforeg is harmonic.
Similarly we see tha.le\/Ll is holomorphic.
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We also can prove this more directly by computing,

q(f1, f1)
9 f1 = L) f = -l 3.10
:fi=q(f1, S ) f (3.10)
On the other handf; is a local antiholomorphic section éf_1. However, if we set
fz
= 3.11
S q(fz, f2) 611

Then f_1 is a meromorphic section df_ (i.e. it is holomorphic except on the zero-set of
the denominator) which satisfies

4D

q(f-1, f-1)
If A’Ll does not vanish identically aif then the same is true f(zﬁ’L’fl as a consequence of
(3.9). LetLy andL _» be unique line sub bundles ﬁff defined by

Ap (o =f 8%f= fa (3.12)

Im(Ay,) S L2, Im(A7)C L

Thus,L, andL_, are positive, non-degenerate and satisfy= L_» since, on a complex
chart(U, z) we set, (except possibly on the subsetiofvhere f; = 0)

q(f1, f1)

Hence,f> = A’il(fl) is alocal meromorphic section @b such thag (f2, f) = 0, by (3.8)
and conformality off. Notice thaiz (f2, f) = Ois equivalent to R¢> and Imf, € Ty H".
Then if f # 0, ¢(f2, f2) > 0 on an open dense subset@f Hence,L, is positive
and non-degenerate and the same is truelfos consideringfy and f>. Therefore,Ly
and L_» have holomorphic structures determined ¥y, and V;_, via the theorem of
Koszul-Malgrange and the corresponding magsy_» : M — CP" factor throughCP;.
Arguing as before, we see that andg_, are harmonic maps intGP;.
A direct calculation shows that

fi=fo, fo=10.f1— f1. (3.13)

1 CI(fZa fZ)
A =0zfo=———— 3.14
1,(f2) = 3 f2 2 D A (3.14)
Defining
—f2
_9p =! — = = 315
2 G R (519
it easily follows thatf_5 is a local meromorphic section éf_» such that
/ " Q(f—la f-1)
A _2)=f_1, A ) =0:f1=———""""f_ 3.16
L ,(f-2) = fo1, AL (f-1) f-1 (o, f_z)f 2 (3.16)

Remark 3.2. Notice thatf2 = «(9,, 9,) is the (2, 0) part of the complexified second
fundamental form off. In particular,f is totally geodesic if and only if> = 0.
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So far, we constructed a set of non-degenerate line sub bu{ricjl};%;2 which, as conse-
quence of conformality and formulas (3.8), satisfy orthogonality relations,

LiLL; forO0<|[i—j|<3 and —2<i,j<2 (3.17)

Note however that from (3.17) one can not deduce that | Lo.

Thesecond Hopf differentiaj, = 1S( fo, f2)dz* measures the failure df_, and L, to
be g-orthogonal. By (3.14) it follows thajy is a (globally defined) holomorphic complex
quartic differential.

If no = 0, we can inductively set forth the process provided that successive Hopf differ-
entialsn; vanish onM. So, after completing > 2 inductive steps we hawg = 12 =
--. = nx—1 = 0, and on a complex local chail/, z) in M we have recursively generated
C+-valued maps by the algorithify 11 = (3/82) f; — (¢((3/32) £, F)/I1 {112 fj. =
1, ..., k — 2, which are positive, i.q.|fj||2 > 0 since by construction and the vanish-
ing of then;, ¢(f;, f) = 0 holds, thus, R¢;,Im f; € TyH", and sincef; # 0, then
q(fj. fj) > 0.

These local generat&@!-valued mapg; give rise to a finite sequence of non-degenerate
line sub bundles

L_g,L k41, ..., L1, Lo, L1, ..., Lg-1, Lg,
all which are positive exceftg which is negative, satisfying-orthogonality relations,
L; L Lj, for O<|i—jl<2k—1

If nx # 0, thenits ceros are isolated since it is a holomorpkidi#erential which measures
the orthogonality of._; andLy.
Al
By Lemma 3.1, there are holomorphic bundle méps-' L ;;1, and antiholomorphic
Al
bundle maps.; — L1 with (A} )* = A} with A} (f)) = fj+1, andA] (f)) =
fi—1. Due to the correspondenég < ¢; there is a sequence of maps

(p—kv ety @—L‘POa‘Pla cee ‘Pk
which are harmonic int€H" for j = 0, and intoCPj if j # 0.

Note that the finite sequence 6f‘t'-valued mapsf_i, f-k+1, ..., f-1, f = fo,
f1, f2, ..., frislocally generated fronf on a complex chaxt, U) by a Gramm-Schmidt
type algorithm namely,

df; 9 2
5. = firt (8—Z logl| £l ) fi
) (3.18)
o _ AP
0z [T

where||f;11> = q(f;, f;) > 0 for|j| # 0 and||f]|> = —1. In particular, this shows
directly that eacly; is a local meromorphic ssection of the corresponding line buhgle
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In this paper, we distinguish a class of maps caracterized by the non-vanishing of the last
Hopf differential. This motivates the following.

Definition 3.1. Let f : M — H" be a harmonic (non-constant) map andmet= [(n +
1)/2]. We say thatf is, superconformaif n1 =n> =--- = n,,—1 = 0, buty,, £ 0.

Remark 3.3. Using induction and formulas (3.18), it can be shown that the above definition
does not depend on a particular local complex coordinate. This is left to the reader.A second
class of harmonic mapg : M — H" is obtained if one requires thaf = n, = --- =

nm = 0. These are calledotropicin the literature, and were studied in [9]. It can be shown
that isotropic harmonic surfaces ' can be obtained projecting suitable complex curves
into some auxiliar flag space. This will be the matter of a subsequent paper (see [10]).

According to the preceeding definition a harmonic superconformal fiad — H? is
precisely a non-conformal harmonic map, whereas a conformal harmonigmap —
H* is superconformal asotropig i.e.ns = 0.

As in the case of the sphers8 in [2], there are two types of superconformal harmonic
maps intoH 2" namely, those which are linearly full intg2”, and those which are linearly
full into some H2"~1 totally geodesic immersed iH?".

The second case is simpler and deserves separate attention.

Proposition 3.4. Let f : M — H?" be a harmonic superconformal map which is linearly
full into some totally geodesic copy B2 1 immersed inH?". Then the sequence of line
bundlesL; of f is periodic of period?m, i.e. Lyt2, = Ly for every integek.

Proof. By hypothesis, there exist a positive vectore Rim“ such thatf is full into
V N H?", which is a copy off 2"~ totally geodesic immersed intd2" whereV = n-.
In particular,Ly c V¢ for everyk and,L; L L;for0 < |i — j| < 2m — 1. Hence,
L, L Ljforj=-m+1 ..., m— 1 ThisforcesL_,, = L,, since by hypothesis

(@km;_lm+lLk) ® L,, = V¢, hence the 2-periodicity of the sequencg, follows. O

This does not occur however with the harmonic superconformal rhagsch are linearly
full into H?".

Applying (3.18) and induction we obtain the following formulae which are analogous as
those obtained in [2] fo§”.

Proposition 3.5. Let f : M — H?" be a superconformal harmonic map. Then
1S
foj= (=)l
! 11112
Here, we consider the following question: which invariants determine a superconformal
harmonic map up to ambient isometries?

forO<j<m (3.19)

Theorem 3.6. Let f, f : M — H?" be harmonic superconformal maps having the same
induced metrics and the sameh Hopf differentials. Then there is an isometpyof H2m
suchthat® o f = f.



150 E. Hulett/Journal of Geometry and Physics 42 (2002) 139-165

Proof. We assume that and f are full and introduce (globally defined) real forms=
7;1dz|> andp; = £;1dz|?, wheret; = || f;4.1l[?[1 /1172 and#; = || fj41l[?]1 /1|2 Since
by hypothesisf*h = f*h we haveyg = yp, andy_1 = p_1. As a consequence of the
Gramm-Schmidt type algorithm (3.18) on a complex cléttz) we have

2

2 .
Ebgllfjll =7 —7-1, lil=0,...,m

From this, we deduce that 1 andyg determiney; for |j| = 1, ..., m. In particular,

1, =1t;for|jl=0,1, ..., m, hence]|f;|| = f;l| for [j|=0,1, ..., m.

On the other hand, by hypothesis we know that

q(fi ) =q(fi. f) =0,0< i — jl <2m

q(fi. ) =q(fi, f)=0,i=1...,m-1
0 F) = 4o Fo)

But {f;, f; : j = O, ..., m} spansC®" 1. Hence, there is a matrid = A(z,7) €
SU(1, 2m) such that

fi=A, fi=Af;, j=0 ...m

Thus,A = A and using (3.18), we see th@k/dz)A = (3/d7)A = 0, i.e. A is a constant

matrix in SO(1, 2m). One can suppose (composing with isometrieg/é? if necessary)

that there is a poingg € M such thatf (pg) = g(po) = eo, the first vector of the canonical
basis. In particulatAey = eg thusA € SO, (1, 2m). O

4. Primitivelifts
4.1. The flag domain

LetF,, bethe setofordered sequencgs, £1, ..., £u), Lmr10fmutuallyg-orthogonal
complex lines inC?"*, where £y is the complexification of a negative line Rﬁ’"“,
and£;;j = 1, ..., m are positive complex lines. The pseudo-orthogonal Lie group

SO, (1, 2m) acts transitively ort,, in the usual way

g.(£o, L1, L0, ..., L) = (gL0, gL1,8L2,...,8%n)

Let £3 = Cep and £0 = C(ez—1 — iex), Wheree is the standard + 1-basis vector of
C?"*+1 Then the isotropy of the point = (£3, £9, ..., £9) € §, is themD compact
torus

Cosp; —sing;
T = diagl1, R(¢1), R(¢2), ..., R(gm))lpx € RY;  R(p) = ( )

sing; cosgy;
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Thus, we may identify§,, with the quotientSO, (1, 2m)/ T, and there is a natural projec-

tion P : §, — H?" defined as follows. Givelf = (£o, £1, ..., £2) € Fm, We may
pick g-unit basis vector§; € £;,j = 1, ..., m and putV; = (1/v/2)(vzj_1 — ivz)),
for j = 1, ..., m andvo, the unique vector iRZ"** determined by the following two
conditions:

h(vo, vo) = —1

{vo, v1, v2, ..., v2,}isapositively oriented-orthonormal basis dﬂf’”l

Let P(£) = vg € H?". Thus, P sends an elemenf#] € §, to the Oth columnFy of
F € SO,(1, 2m). According to this definition, a poir € §,, is determined by (£) and
£1, 80, ..., L1,

The Killing form of so(1, 2m) induces &0, (1, 2m)-invariant pseudo-Riemannian met-
ric ong,,, namely,

(X,Y)=itr(x.Y), X.YeT,(Fn

With this metric the projectio® : §,, — H?" becomes a (pseudo)-Riemannian submer-

sion since the metrie on H?" is given byh(X, Y) = (1/2)tr(X.Y), for X, Y € T,,(H?").
There is also ai2-symmetric structure of,,, defined as follows. Letbe the Lie algebra

of T:

0 _
t = {diag(0, O(u1), ..., O(um))|ux € R},  Ou) = < O”)

u
Set
o;ldiag(0, O (u1), ..., O(um))] = iu;.

Then as positive simple roots we take = {a1, a2, ..., o), Wherea; = o1, 02 =
02— 01, ..., Uy = Oy — Op—1, aNdu = oy, + o1 is the highest root.

Now pick elementsZ; < it" so thatx;(Z;) = Sjk and putZ = % Y ie1 Zi. Thent =
Ad(exp2riZ) is an automorphism af (2m + 1, C) such that 2" = Id. Itis easily checked
that T preserves the real forsv(1, 2m), and if we denote also by the corresponding
automorphism induced a$0, (1, 2m) (note thatr is determined up to conjugation by an
element of§O, (1, 2m)), thent (T') C T and hence determines anisometty: §,, — 3
of order 2n.

We computeZ;, = i diag(0, 6(0), 6(0), ..., 6(0), (=1, ..., 6(—1)). From this one
can write down the 2-symmetryr = Ad(2riZ) explicitly,

r = Ad [diag(l, R (%) R (%) ... R (@) , R(n))] (4.1)

cosg —sin (p)

where,R(¢p) = _
sing cosg
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Example4.1. Note that form = 2 and 3 the symmetry is given, respectively by

10 0 0 0 0 o0
o} By o 0 0
100 0 0 2 2
00 -10 0 o Y31 4 0 0
2 2
aAdlo 10 o o] Ad
00 o0 —%—g’oo
000 -1 0
00 0 3 1 4
000 0 -1 > 73
00 o0 O 0 -1 0

00 O 0O O 0 -1

Letv = €7/ \We have, thus, a direct sum decomposition
s02m +1,C) = @jez,,m;, m; ={X €s0(2m +1,C)|t(X) =1’/ X}

Recall now from (2.2) the conjugation atomorphismso(2m + 1, C) — s0(2m + 1, C)
respect to the non-compact real fosm(1, 2m). We need the following.

Proposition 4.1. The automorphisms ando commutgi.e.oc ot =t o00.

Proof. Easily follows from the definitions of ando and is left to the reader. a

As a consequence th)é-eigenspacemj satisfy
[mj, ] Cmjys, j.k € Zom o(mj) =m_;. (4.2)

Note that sinceng = t¢, o (mg) = mo.
Moreover, eachny is Ad(T)-invariant and determines &0, (1, 2m)-invariant subbun-
dle [mg] of the complexified tangent bund®&F,,)€ of F, namely,

[m](xT) = Ad(x)(L - my - L), x € SO,(1, 2m),

,_,\qu
whereL = diag(i, 1, ..., 1 ). Hence, we have the following identification

T(Em)€ = ®rezy, [

On the other hand, we know from the general theory [6] thatlecomposes into a direct
sum,

m1 = Z gotk’ (43)
k=0
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whereg,, C so(2m + 1, C) is theay-root space, andg = —u. From this we obtain the
following.

Lemmad4.2. The subspace C so(2m+1, C) consists of matrice®¥ having the following
form,

0 01 0 o - 0
_QI 0, 0> 0 0
0 -0] O Qz -~~~ 0
X=1]0 0 -0 0 ... : (4.4)
0 0 & Om
0 0 _QL 0,
where
-1 i
Ql:al(_19l)7 Qj=a] . 1 ) j=15"~7(m_1);
i —

a b
On=|. .|, ajabeC
ia ib

According to [6] we introduce the following.

Definition 4.1. An elementX € mj is calledcyclicif a, b, a1, b2, ..., an—1,bp—1 €
C — {0} and|a| + |b| > O.

We refer the readerto Lemma 2.1 of [6] for the characterization of cyclic elements interms
of the homogeneous generators of the ring of #d(2m + 1, C))-invariant polinomials.

Definition 4.2. Amapy : M — §,, is calledz-primitive if dy (719 M) ¢ [m4], and
contains a cyclic element, (i.eydT®9 M) is not contained in any sub bundle obtained
from my by omitting one of the direct summands in (4.3)).

Given a super conformal harmonic mgp: M — H?", we may construct a liftf :
M — §, as follows. Putgp = Lo, £; = L;for j =1, ..., (m — 1), and letg,, be
determined by the conditioR(£Lo, £1, ..., £n-1, Lm) = f.ThenL,, livesing, d £, =

[®”1,L;]* and define

A

f = ('207 Elv AR} 2}71719 Sm) (45)
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Theorem43. Letf : M — H?" be a harmonic map. If is super conformal then the
lift f: M — 3., given by(4.5)is primitive. Converselyif v : M — 5, is primitive, then
f=Poy: M — H? is asuper conformal harmonic map such that= .

Proof. Assume thatthe harmonic mgps superconformal. L€t ; }’" _n» bethe sequence
of non-degenerate line bundles pf and f; the corresponding Iocal section bf,, gener-
ated on a local complex chatt/, z) by algorithm (3.18). Defin®?"*-valued functions
F1, ..., Fo,, onU by

fi= I ill(Fojm1 = iF2), j=1 ... (m—1)
(4.6)
fon = @F2y_1 — ibF2y, with  [Fou_112 = || Fonll? = 1

wherea andb are real valued functions obi such thaty,,|y = (a? — b?)dz?", hence
a? —b% £ 0onU and|| f|1? = a® + b2 We can assume thétf;|| > 0,j =1, ..., m
onU since f; vanish only at isolated points.

DefineF = (f, Fi1, F2, ..., Foy_1, F2,,). Then by (4.6) and (3.18), it follows thé&tis
O(1, 2m)-valued onUU and we assume thé&tis SO, (1, 2m)-valued onU. We have

Put
Lo =C/f, L= C(sz_l— inj), j=1 ..., m 4.7)

Note that€,, # Ly, butL, C £, ® L. Definef = (Lo, £1. ..., &), henceF -0 = f,
i.e.F is aframe off onU.
Now using (4.6) and (3.18) we see tlrasatisfies,

F7F, = L(Ao + AL,

whereA; € m_g, andAp € mo. .
In particular,f, = F - L - A1L € [m1](F - 0) = Ad(F)(L - my - L) whereA; € my is
cyclic by (4.6) and by our assumptiory;|| > 0 onU for j =1, ..., m. This shows that

£ is primitive.
Conversely, lety : M — §,, be a primitive mapy = (£o, £1, ..., £x), and setf =
Poy.Let(U, z) beacomplex chartit, andF = (Fo, F1, ..., Fop) : U — SO, (1, 2m)

a local frame ofyr then,
£o=C/f, £j=C(F2j_1—iF2m), j=1 ..., m

In particular,F is also a local frame fof, and beingy primitive, F~1F, = L(Ag+ A1)L
with Ag € mgandA; € mz. ThereforeA; has the form (4.4) whew@, ..., a,-1,a, b, are
complex functions o/ vanishing only at isolated points. From the isotropyCeffollows
that f is conformal and, from the structure &f we deduce tha&{éé o Aggo(f) = 0, hence,

f : M — H?" is harmonic. This also follows from the general theory in [7] sirfcis
covered by a primitive map.
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By rotating on the normal plane spanned {1, F»} we can getf: = (|| f:||/v/2)
(F1 —iF2) ora1 = i|| f-]|/+/2, (note that such a rotation leaves the complex ne=
C(F1 — iF») unchanged). Using the structure Af it is easy to check thaf; =: f; is a
holomorphic local section of; and thatf, =: (3/dz) f1 — (¢((8/9z) f1. f0)/11f:112) f1
defines an holomorphic local section 85. Performing a rotation on the normal plane
spanned by F3, F4} if necessary, we can get (keeping the complex fneunchanged),
f2 = (1f2ll/~2)(F3 — iFg), andaz = ||f2I//2|| f1l|. Notice thatn, = 0 sinceLs is
isotropic. Continuing this way and rotating appropriately (if needed) the vegiors 1,
F»;}, we generate inductively local holomorphic sectiofis=(| f;l|/v/2)(F2j_1 —
iF2;) € £;, and matrix coefficients;; = || fj4all/2If;ll for j = 1, ..., (m = 1).
Finally settingf,, = (8/02) fu—1— (q((3/32) fn—1, fm—-1)/I| fm—1l1?) fm—1, and using the
structure of the matrixXA; once more, we see that the last coefficientsAin are
given by

_ Ml ™l

NG

wherew, B are real functions oty such thatf,, = o Fa,,—1 —ip Fa,, With «? — 2 vanishing
only at isolated points. Defing,, = C- f,,. After a straightforward calculation, one con-
cludes thatf,, is a holomorphic section df,,, andy,, = («? — %)dz?" is a non-vanishing
holomorphic 2:-differential onU. Moreover,L,, C £,, EBE,,, All this clearly says thay

is a superconformal harmonic map int” satisfyingy = f. O

B.

4.2. Special frames

The proof of the Theorem 4.3 suggests that we may use the information contained in the
harmonic sequence of a superconformal minimal riap¥ — H?2" to construct special
adapted frames of.

In fact, let f : M — H?" be superconformal harmonic, and: U — C a local
complex coordinate on a simply connected operiset M, then using (3.18) we generate
positivesz“—vaIued{f,}|j| =1, ..., m. Thenby (3.18)a°(f,:, fn) is @anon-vanishing
holomorphic function o/ and we may choose the local coordinat® thath®( f,,,, fn) =
1 onU, hencez is unique up to arbitrary translations and multiplication byrardot of
unity. A proof of this fact is given in [6]. We introduce real functlan;.:on Ubyllfill =

e (recall that]| fol|2 = —1) andR?"*+1-valued functionsFy, ..., Fau_1, F2,, onU by
setting
e , ,
fi=—=F2j—1—iFy), j=12...,m—-1

V2
Jfm = coshu,, (F2—1) — i Sinhuy, (F,)

From (3.18) it follows that = (f, Fi, ..., Fay) is SO(1, 2m)-valued onU. According
to (4.1) the change of the franffeon U is expressed by

F.=FL-A-L (4.8)



156 E. Hulett/Journal of Geometry and Physics 42 (2002) 139-165

whereA is given by

0 01 0 0
—0] 6(-iup) 02 0
0 -0r  6(-iu) Q3
A=1]0 0 -0! O(—iug) --- : , (4.9)
0 e e 0 9(_ium—l) Qm
0 Sy 0 (—iuy)

e gy (10—
O1=i—1-0. 0j=-" ]<, l)forj:l,...,(m—2),

NG 2 i1
eum-1 [ coshu,,  —isinhu,
On == NZ) (icoshum sinhu,, )
Setting2 = i diag(0, 6 (—u1), (—u2), ..., O(—un)) € it, thenA can be decomposed
as follows:
A=, +e’Me? c mg®my, (4.10)
where
0 Mq 0 0 0
-M] 0, M, O 0
0 -M] 0,  Ms 0
M=]0 0 -M] 0 : € my, (4.11)
0 02 My,
0 AR
where
Ml_i(i,l), szl'(_:.L l ), j=1 ..., (m—-1),
V2 2\ - -1

-1 0
My = (_i 0) (4.12)
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Among (local) frames of a primitive magp : M — F,, we distinguish a special kind of
frames. Following [6] we call a local franfe: U — SO, (1, 2m) a Toda frame if there is
a complex coordinate: U — C and a smooth mag : U — it such that

F I, =2, +AdE*)L-M-Lemg®L -mi-L (4.13)
NotethatL - H - L = HVH € my.

Remark 4.1. Using harmonic sequences we have produced a local Toda frame for a
T-primitive mapy : M — §,, as can be seen from Eq. (4.10).

A Toda frameF is unique up to multiplication by an element of the compact torus
T c O(1, 2m).

4.3. Integrability conditions
Here, we determine the integrability conditions for the existence of a (local) Toda frame

of a primitive mapy : M — §,,. To this end we decompose the matvixe m1 into a sum
of root matricesX ; € so(2m + 1, C) defined by

0
0 i 1

1 —1 O O 1

Xi=—2|_-1 0 o , Xj=+5 02 P; ,
2
ﬁ —P]T 02
0
j=2, ..., m,
where

P; = —FE3j_32j-1+1Ep;_32; —iEzj_22;_1— E2j_2 2],

0> represents the  2-zero matrix and, g the square matrix with 1 in ther, ) place
and zeros outside. The last mathy is defined by

0

X 1
0=z El
2 07) Py

—PJ 02
Po=—E2m-32m-1—1B2n-32m — IBom—22m-1+ E2m—22m
Note thatCX; = gq; is the root space corresponding to the simple wptAlso M =
Xo+ X1+ ---+ X, holds. Moreover,
{ [Xj,0(X))] =tr(X;-0(X;)) - Hj

4.14
[ Xk, 0(X)] =0, fork #1 (4.14)
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whereH; € it are given by

Hy = 3idiag0, 0(—1), 0y, ..., 02)
H] = %1d|ag0,02, s 6(1)59(_1)7027 M ] 02)5,] =27 MR m
S——

) (4.15)
Ho = 3i diag0, 0, ..., 02,6(1), (1)

——

m
We leave for the reader to check tifaf < it is dual tox; respect to tiX - Y.
Our choice of matriceX ; is such that
2, for j=1

dj = tr(Xj -U(Xj)) = (416)

-2, for j=0,2,...,m
From (4.16) and (4.17) we obtain the following.

Lemma4.4. LetL-A- L = F~1F, whereA is the matrix (4.10) an8 = o (A). Then the
integrability condition A, B] = A; — B, for the existence of a Toda frankeis equivalent
to

22:=) d; e DH; (4.17)
j=0
where2 = i diag(0, 0(—u1), O(—u2), ..., O(—upm)) € it.
Proof. Ad(e)M = Y .. €)X, by definition of X;. Analogously we see that

o (Ad(€)M) = Ad(e")o(M) = Y, ..« €D o (X ;). From this and (4.16) the Lemma
follows. Note thabr (g¢,) = gu_; - O

In terms of the real functions; Eq. (4.17) is equivalent to the following non-linear
elliptic system
2u1; = 2ua—u1) 4 g2
2ujpz = LU — U= =20 =2
(4.18)
Zu(mfl)zz — e_zum—l cosh &m — ez(“m—l_“m—Z)

2umz = —e 2m-1sinh 24,

Theorem 4.5. Let (U, 7) be a complex coordinate @af with U ¢ M a simply connected
open subset and le&® : U — it be a smooth map. Thdeqg. (4.13)has a real solution
F € SO,(1, 2m) if and only if the field2 = i diag(0, 6(—u1), 0(—u2), ..., 0(—uy))
satisfies the 2D-affine Toda fielitl)s. (4.17).

In this caseyy = o F : U — F,, is t-primitive and f (F) is a Toda frame of/.
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Proof. The integrability condition for the existence of a Toda fraffnie (3/9z)(9/0z)F =
(0/02)(8/9z)F which by (4.8) is equivalent taY, B] = A; — B.. This in turn is equivalent
to system (4.18). The final statement follows from (4.10). O

Remark 4.2. Eq. (4.17) with real arbitrary constantsis called by some authors the gener-
alized (elliptic) 2D-affine Toda field associatad2m + 1, C) [11]. Our choice of constants
d; in (4.16) depend essentially on the matriéggésand the conjugation authomorphism
(2.2) determined by the non-compact real fosel, 2m). For this reason we call (4.17)
the 2D-affine Toda field associated to the gai(2m + 1, C); o). Notice that the 2D-affine
Toda fields considered in [6] are in fact associated to a @gif) whereg is a complex
simple Lie algebra antlis a compact real form af.

Remark 4.3. Note that a Toda framg& with field £2 for which u,, = 0 gives rise to a
primitive mapy which projects onto a superconformal harmonic nfaphich is full into
a totally geodesi@f2"—1 c H?",

5. Existence

Here, we apply the Adler—Kostant—-Symes integration scheme to construct finite type
primitive mapsy : H> — §,, and harmonic superconformal mags: H?> — H?".
The main reference here is the expository article by Burstall and Pedit [7]. We intro-
duce the standard ingredients of the general theory in order to keep the paper self-
contained.
Given a primitive mapy : M — 3., thereis aliftF : M — SO, (1, 2m) defined on the
universal covering space 8f. Pulling back the left Maurer Cartan forof SO(2m+1, C)
by the frameF, one obtains theo(2m + 1, C)-valued one-formx = F~1dF on M which
splits into(1, 0) and(0, 1) types,
@) o oy
—_————— ——
a = Ajdz+ (Agdz + Agdz) + A7 dz

whereAg = Ag : M — mp, A} : M — my, with A} cyclic andA] = o(A}). The
compatibility (or integrability) condition for the existence of such frame is given by the so
called zero curvature condition or Murer—Cartan equatiorifor

do + %[a Aa]l=0
In terms of the one-formyo, a7, f the equation above decomposes into
dorg + %[ao Aao] = —[a] A ]l dof +[aoAa)] =0 (5.1)

The key point is that these equations may be reinterpreted by introducing a complex spectral
paramete € St in «, namely,

ay = ra) +ao+r"lef, rest
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Thena = o} + ag + o satisfies (5.1) if and only if the loop of one-form satisfies
doy, + 3[on. A ] =0 Ve st (5.2)
Integrating (5.2) on the simply connectafl, we obtain ans®-loop of framesF; : M —
SO, (1, 2m) such that
FldF, =y, Fi(po)=Id vaes?

wherepg € M is some fixed point.

Hence, one gets ast-loop of r-primitive mapsy;, = 7 o Fj, : M — §,, with 1 = ¢
wherey;. (po) = ¥ (po) VA € St In particular, this shows that primitive maps and hence
harmonic superconformal maps existsihloops that are called associated families in [7].

In order to get a different perspective of the above situation, we introduce here some
Loop algebras and groups following [7]. Lgtbe the non-compact real foraw(1, 2m)
of the complex simple Lie algebe(2m + 1, C). Recall from (2.1) and (2.2) tha€ =
s0(2m + 1, C). The twisted complex loop algebra is defined by

AgC = (g : 8T — g€ £(@™r) = tE(L) VA € SY
There is also the real form ofgf determined by:
Ag, = (£ € AgC (L) e gVa € §Y)

Any loop& € Ag¢ has a Laurent expansidiia) = > jeZ ;A with §; € m;, i.e. such
thatté; = v/&; (v = €7/™). Giveng e Ag¢ its conjugate respect to the real foury, is
defined by

&N =) @),
whereo is the conjugation authomorphismgf determined by, see (2.2). In particular,

DG e Ageiff o) =5k ke
keZ

Note that a mag : ST — so(2m + 1, C) is in Ag; iff it satisfies the following conditions:

o(E(L) =EM)Vr e ST

T(EM) = E(WA) VA € St (5.3)

The first one is called the reality condition determined by the non-compact real form
s0(1, 2m).

Define a subalgebra—g¢ = {£ € AgC : & = 3, o &AF, & € t}, then one has an
orthogonal decomposition into complementary (closed) subalgebras,

Agl = Ag, & A g€

with respect to the weakly non-degenerate invariant real symmetric bilinear form

€n=im [ wen e
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Letmk : Ag¢ — Ag, be the projection determined lgy ) and the complement —g€.
Thenrg is given by

mk(€) =& + & +0(ED),
wheres (™) =3, &1/ € AgE.
For a fixedd € N such that! = 1 mod2m) consider the function,

1O =4 [ et A© +if©. (54

Then projecting the gradients gf on Ag,, one obtains two Hamiltonian vector fields
X1, Xo0Nn Ag;.

The truncated Laurent polinomial loops of longitutiierm a finite dimensional subspace
of Ag;, namely,

Ag = {& € Ag; 1 &, =0V|n| > d}
Restrictingf1, f2 to A4, then foré € Ay,

X1 =[&, nx (Ve f2)]

(5.5)
X2 = [&, mx (Ve fO)],

whereV; f1 = A179¢, V; f, = i2179¢ are the gradients of1, f> respect ta, ), respec-
tively. Since f; Poisson-commute [7], their commutator vanish, iX;,[X2] = 0. Note
that ifd = 1 mod(2m) then the gradient¥ f; defined above arﬁgf-valued.

Both commuting Hamiltonian vector fields; considered above are of Lax form, i.e:
X (&) = [&, E(£)]. Then if&(¢) is any integral curve of such an, we have

d d
5 &8 =2 (af, ~’§) =2([§. E(5)].§) = —2(E(§).[£.5]) =0

Note that the bilinear form (5.1) is non-definite ey, and, thus, onAd,. Hence,£(¢)
evolves in a generic non-euclidean sphere containet);imnd, thus, may not be defined
for everyr e R.

Since [X1, X2] = O their flowsX? andX’2 commute,

XjoX5=X50X3

for s andt where they are defined. Fixed an initial conditigne Ay, defineé : U C
R? > Ay by

(s, 1) = X7 0 X5(5),

for all (s, 7) in a suficiently small open neighbourhood @ 0). Then one verifies that
&(s, t) satisfies

dé = X1(§)ds + X2(5)dr,  £(0,0)=¢,
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Now we define commuting complex vectorfieléfs and o (V) on Ag by X1 = V +
a(V), Xo =1i(V —o(V)), hence,

V(E) = [s, 5”’—2‘1 + Asd]

a1 (5.6)

2

o(V)(§) = [s, + Klg—dj|

Introducing the complex variable= s + it and applying the above argument to it follows
that the ODE’s system:

a
a—zé = V().

S e — @), (5.7)
0z

£(0,0) =",

has a unique solutian: Ug — Ay for any given initial conditio® € A4, wherelUg C R?
is an open neighborhood @@, 0) € R? which we can assume to be connected and simply
connected.

With this solutioné the A1-valued one-form

o = Mg dz + 3 (Eg—1de + E_g1d2) + 27Ny dZ,
satisfies the zero curvature condition or Maurer-Cartan equation:
doy, + 5[ A 0z] =02 € St (5.8)

Thus, integrating on the simply connect&g we get ans*-loop of framesF; : Uy —
SO, (1, 2m) with F;l dF; = o, VA € ST and one can arrange the constants of integration
so thatF; (0, 0) = ldVa € SL.

5.1. Integration of the Toda equations

Using the above construction it is possible to get solutions of the 2D-affine Toda fields
(4.17) associated to the paio(2m + 1, C); o) as follows.
Inspecting the ODE system (5.7) we see thatitfie! andA¢ terms satisfy

0 0 1 0 1
8_Z§d71 = [&4,&-4], 8—Z§d = E[f‘?d, £1-4], a—zéd = —E[éd, &s-1].  (5.9)

In particular, themg part of F~1 dF is given by

o bayr o a1
Ag = 5 dz + 5 dz

Hence,

Ao = ig_’;'l oz — iédz_l dz
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Now by (5.9) we havel x Ag = 0. Therefore, the equation

d2 =i % Ao,
(5.10)
£2(0,00=0
has a smooth solutiof? : Up — it and, hence{2, = &;-1/2, £2: = —&_441/2 hold on

U. If we choose the initial conditio&® in (5.7) so that°; = M e m1, then Ade?)M and
&4 both satisfy the same system of ODE'’s

Y, = —3[Y, £4-1]

Y: = 3[Y, &_q41] (5.11)

Y(0,0) = M

Therefore,&; = Ad(e?)M on Up. Thus, each member of the lodpt > » — F;,
obtained by integration of (5.8) is a Toda frame for therimitive mapy, = 7 o
F, : Up — §n. In particular,2 : Ug — it is a solution of the 2D-affine Toda field
(4.17).

Remark 5.1. Note that sinceMl, o(M)] # 0, the null map2 = 0 can not be neither a
solution of (4.17) nor (5.10).

According to the Riemann mapping theorem, the connected simply connected open neigh-
borhoodUy of (0, 0) is either the complex plan€ or is conformally equivalent to the
open unit discD = {z : |z| < 1}. By applying an earlier result of Sattinger it is possi-
ble to rule out theJy = C possibility at least for, namely, harmonic conformal maps of
Uog — H".

Theorem 5.1. Let M be a connected non-compact Riemann surfacel f : M —
H" (n > 2) be a minimal immersigni.e. a harmonic conformal map. Then the uni-
versal covering spac@/ of M is conformaly equivalent to the open unit difg =
{z:]z] <1}.

In particular, the theorem is true for minimal superconformal immersions of connected
surfaces intaH"”.

Proof. Let us suppose that is conformaly equivalentt€. Thenf = fox : C — H”

is minimal, wherer : C — M is the covering map. LeX (g) be the Gaussian curvature of
the induced metrig = f*h. Respect to the global isothermal coordinaten C, we have

g = €% dz dz for some smooth function defined on the whole complex plane. In terms
of u the curvature is given bk (g) = —(1/2)4e 2/(2u.:). Hence, the globally defined
smooth function: must satisfy

Au = —K(g)e™,
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whereA = 92/0x2 + 92/9y?. Since f is conformal harmonic, the Gaussian curvature
satisfiesk (g) < —1. Under such conditions Sattinger [13] proved that there is no solution
u of the above equation defined on the whole complex plane. O

Recall the Poincaré model &f2, (D1; ds? = 4|dz|2/(1—|z|®)?). Using Theorem 5.1 we
may (modulo conformal transformations of the plane) summarize the results of this section
in the following.

Theorem5.2. Letm > 2andd = 1 mod2m). Recall the commuting vector fieldso (V)
defined o4, by (5.6).

() There exists a unique solutign: H? — A, of the ODE’s syster(b.7) with initial
condition&(0,0) = £° € Ay, withé°; = M € my.
(i) The Aj-valued one-form defined in terms of the solutfoof (i),

@, = Mg Oz + 3(Eg—10z 4+ &_g102) + 27 1E_4 dZ

satisfies the Maurer—Cartan equatialy, + (1/2)[a, A o] = OVA € S1. Hence
integration ofF; 1 dF;, = @, F(0,0) = Idva e S* gives rise to ans*-loop of
framesF, : H2 — SO,(1, 2m) for the primitive mapsy, = 7 o F : H? — Fn,
and consequently this produces &floop of minimal superconformal immersions
fi=Povyy : H2 — H?",

(i) TheF, are Toda frames of the primitive mapg = 7 o F; : H?> — §,,. Thus there
exist a solution2 : H? — it to the 2D-affine Toda fielEq. (4.17).
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