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Abstract

The class of harmonic superconformal maps from Riemann surfaces into real hyperbolic spaces
is considered and harmonic sequences are constructed for these maps. They are used to obtain
a rigidity result for such maps and to construct primitive lifts into an auxiliary flag spaceFm. It
is also shown that superconformal harmonic maps intoH 2m andH 2m−1 are locally described by
2D-affine Toda fields associated to the pair(so(2m+1, C), σ ), whereσ is the involution determined
by the non-compact real formso(1,2m). Applying the Adler–Kostant–Symes integration scheme
to appropriate loop algebras we construct finite type primitive mapsψ : H 2 → Fm, and harmonic
superconformal mapsf : H 2 → H 2m and hence finite type Toda fields. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In recent years, there has been a great deal of interest in the study of harmonic maps from
surfaces to Riemannian symmetric spaces of compact type. The fact that the harmonic map
equation for surfaces in these spaces is a kind of completely integrable system, was the
starting point for the construction of harmonic maps from compact surfaces of genus one
(i.e. two-tori) in compact symmetric spaces and Lie groups using ideas coming from soliton
theory. There exist now a well established theory exposed in many articles, e.g. [4,5,7], to
name only the most relevant to us.

When the target is a symmetric space of non-compact type, the integrable character of the
harmonic map equation of surfaces still prevails as was proved by Bobenko [1] for surfaces

E-mail address:hulett@mate.uncor.edu (E. Hulett).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(01)00082-1



140 E. Hulett / Journal of Geometry and Physics 42 (2002) 139–165

in Rn andHn. However, the maximum principle for (sub)harmonic functions implies that
there are no non-constant harmonic maps from compact surfaces into these spaces.

From the point of view of Mathematical Physics the interest in harmonic maps of surfaces
stems from its relation withσ -models. A classical solution of aσ -model is nothing but a
harmonic map into some Riemannian manifold. The study ofσ -models on non-compact
(pseudo)-symmetric spaces arise for example in solid state physics and has many applica-
tions, see for instance [12] and the bibliography therein.

The goal of the present article is to begin the study of harmonic superconformal maps
from non-compact connected Riemann surfaces into the the realn-dimensional hyperbolic
spaceHn of curvature−1. This class of maps can be regarded the natural counterpart
of the harmonic superconformal maps of surfaces into Euclidean spheresSn considered
in [6]. Roughly speaking, a superconformal harmonic map is one whose harmonic se-
quence satisfies certain “orthogonality relations”. In [6] a well-known soliton system called
2D-affine Toda field equations, were used by Bolton et al. to describe it superconformal
harmonic maps of surfaces intoCPn andSn. Letσ denote the conjugation authomorphism
of so(2m+1,C) respect to the non-compact real formso(1,2m). Along the paper we shall
see that a 2D-affine Toda field associated with the pair(so(2m+1,C); σ), locally describes
the geometry of harmonic superconformal maps of surfaces intoH 2m andH 2m−1.

The paper is organized as follows. In Section 2, we recall some standard linear algebra
and introduce some notation. We derive the harmonic map equation for conformal maps of
surfaces intoHn. It is a semilinear elliptic equation which, as consequence of the maxi-
mum principle for subharmonic functions, it has only constant solutions if the domain is a
compact surface. Hence, only non-compact surfaces are interesting. A brief Lie-algebraic
introduction to generalized 2D-affine Toda field equations is also given.

In Section 3, we study complex vector subbundlesE of the trivial bundleM×Cn+1 → M

over a Riemann surfaceM satisfyingE∩E⊥q = {0} fiberwise, i.e. they are non-degenerate
respect to the pseudo hermitian metricq(z,w) = −z0w̄0 + ∑n

k=1 zkw̄k on Cn+1. We
show that these bundles have simple metric connections and hence can be equipped with
a compatible holomorphic structure via the Koszul–Malgrange theorem [8]. Within this
framework, we consider harmonic mapsf : M → Hn for which their consecutive Hopf
differentialsηj = hc((∂(j)f/∂zj ), (∂(j)f/∂zj ))dz2j , j = 1, . . . , m − 1 vanish, except
the last oneηm, wherem = [(n + 1)/2]. The vanishing of the first Hopf differential
η1 = hc(fz, fz)dz2 is equivalent to conformality off , while the vanishig ofη2 is just
conformality of the second fundamental form off and so on. These conditions allow to
generate inductively an ordered sequence of non-degenerate line subbundles ofM × Cn+1:

L−m,L−(m−1), . . . , L−1, L0, L1, L2, . . . , Lm, with L̄j = L−j ,

satisfying orthogonallity relationsLi ⊥q Lj ,0 < |i−j | ≤ 2m. Where the pseudohermitian
metric q is positive onLj for |j | = 1, . . . , m and negative onL0. Besides there is a
Gramm–Schmidt type algorithm which on every local chart(U, z) generates a meromorphic
sectionfj of Lj such thatηj = hc(fj , fj )dz2j . Our approach is conceptually analogous
to that of [3,8], where (euclidean) harmonic sequences are constructed for harmonic maps
of surfaces into compact Grassmanians and projective spaces.

Applying this construction we show in Proposition 3.4 that a harmonic superconformal
mapf : M → H 2m which lies fully into a totally geodesicH 2m−1, has a periodic sequence
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{Lj }, i.e.Lj+2m = Lj , j ∈ Z. This happens also when the target is the standard sphereS2m

(cf [3]). In Theorem 3.6, we show that a harmonic superconformal mapf : M → H 2m is
determined up to ambient isometries by the induced metricf ∗hand themth Hopf differential
ηm.

In Section 4, the geometry of the harmonic sequence is used to construct primitive lifts
of superconformal harmonic mapsf : M → H 2m into an auxiliar flag domainFm. This is
a non-compact analog of some twistor constructions for harmonic maps into spheres and
projective spaces (cf. [6]). Also special adapted frames or Toda frames for super conformal
harmonic mapsf : M → H 2m are considered and the 2D-affine Toda field equations
associated with the pair(so(2m + 1,C), so(1,2m)) are shown to be equivalent to the
integrability conditions for the existence of a Toda frame.

Finally, in Section 5 after introducing some standard Loop-group machinery, we use
the Adler–Kostant–Symes integration scheme to construct “finite type” solutions of the
2D-affine Toda field associated to(so(2m + 1,C), σ ). Here, in contrast with the compact
target case (Sn, CPn etc.) the solutions of the corresponding Toda equations are only local,
i.e. they are not defined on the whole complex plane. Thus, modulo conformal maps of the
plane, we obtain a recipe for the construction of finite type superconformal harmonic maps
and primitive maps of the Poincare discH 2. A related question is under what conditions
a superconformal harmonic (respective primitive ) map fromH 2 is of finite type. This
problem, however, seems to be more difficult and will be considered later.

2. Preliminaries

The n-dimensional Hyperbolic spaceHn is the simply connected real space-form of
constant sectional curvature−1. It can be realized as the unbounded sheet of the hyperboloid
h(x, x) = −1 in Rn+1

1 containing the pointe0 = (1,0, . . . , 0), whereh(x, y) = −x0y0 +∑n
k=1 xkyk, x, y ∈ Rn+1

1 .
The ambient Lorenzian inner producth induces onHn a positive definite metric denoted

with h and the Lie groupSOo(1, n) acts transitively onHn by isometries. In this wayHn be-
comes an homogeneous symmetric space of non-compact type. Taking theSOo(1, n)-orbit
of e0 we have the representationHn = SOo(1, n)/{1} × SO(n).

For later use, we introduce the complex bilinear extension ofh to Cn+1 by hc(z, w) =
−z0w0 +∑n

k=1 zkwk. Definingq(z,w) =: hc(z, w̄), we obtain the Hermitian extension of
h to Cn+1 as well, henceq(x, y) = h(x, y)∀x, y ∈ Rn+1

1 .
Recall that a matrixF is in O(1, n) iff FJFTJ−1 = I , whereJ = diag(−1,1, . . . , 1).

Thus,X is in so(1, n) = Lie(O(1, n)) iff XTJ + JX = 0. Hence,so(1, n) is the set of
matricesX of the form

X =
(

0 b

bT A

)
, b ∈ Rn, A ∈ so(n)

On the other hand, the map

X �→ LXL̄ =
(

0 ib

−ibT A

)
, L = diag(i,1, . . . , 1) (2.1)
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allows to think ofso(1, n) sitting insideso(n+1,C). Hence,so(1, n)C = so(n+1,C), and
the conjugation authomorphismσ : so(n+1,C) → so(n+1,C) respect to the non-compact
real formso(1, n) is given by

so(n+ 1,C) � X =
(

0 m

−mT A

)
�→ σ(X) = J · X̄ · J =

(
0 −m̄
m̄T Ā

)
(2.2)

Notice that the mapF �→ LFL̄ embeds O(1, n) into O(n+ 1,C).

2.1. The harmonic map equation

Let M be a Riemannian manifold andf : M → Hn a smooth map. Then its second
fundamental form is given by

β(U, V ) = UVf − h(Uf ,Vf)f − df (∇M
U V ), U, V ∈ X(M)

The tension field off is τ(f ) = tr β.
If M is a Riemann surface (i.e. an oriented 2D manifold equipped with a conformal

equivalence class of Riemannian metrics), andf : M → Hn a non-constant map, thenf
is called weakly-conformal ifhc(fz, fz) ≡ 0 for every complex local coordinatez onM. A
non-constant weakly-conformal harmonic mapf is called a minimal branched immersion
in the literature. Unless otherwise stated we will work with conformal mapsf : M → Hn

such that dfx �= 0∀x ∈ M.
In the conformal case, the induced metricg = f ∗h can be written in a local complex

coordinate(U, z) as g = ρ2dz · dz̄ for some smooth positive functionρ : U → R.
Equivalently,

q(fz, fz̄) = 0 and q(fz, fz) = ρ2 (2.3)

Proposition 2.1. Harmonic map equation: let f : M → Hn be a conformal map from a
Riemann surfaceM. Thenf : M → Hn is harmonic and hence minimal if and only if on
every complex chart(z, U) ∈ M the following equation holds

fzz̄ = q(fz, fz)f (2.4)

Proof. LetX be a tangent vector field onHn, then the Levi-Civita connection∇H onHn

is given by

∇H
Xx
Y = XxY − h(X, Y )x for every Y ∈ X(Hn)

From this, we compute the second fundamental form off ,

β(U, V ) = UVf − h(Uf,Vf)f − df(∇M
U V ) U, V ∈ X(M)

Respect to a complex chart we have(||fx ||4/4)tr β = β(∂/∂z, ∂/∂z), thus, (2.4)
follows. �
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The maximum principle for sub-harmonic functions, imply that the only harmonic maps
from a compact Riemann surfaceM toHn are the constant maps. Therefore, we will treat
only non-compact Riemann surfaces.

2.2. 2D-affine Toda fields

They are systems of elliptic PDEs which exist in association with complex simple Lie
algebras. To introduce these equations we recall some standard facts of Lie algebra theory.

Let g be a complex simple Lie algebra,h a Cartan sub algebra and∆ = ∆(gC, h)
the corresponding root system. Choose a set of positive roots∆+ ⊂ ∆, and letπ =
{α1, . . . , αr} ⊂ ∆+ be the corresponding set of simple roots, wherer = dimh. Fix a
maximal abelian subalgebrat ⊂ h so thattC = h.

Beingg simple, one has a distinguished maximal rootµ and we setπ∗ = π ∪ {−µ}.
Thus,π∗ labels the sets of nodes of the extended Dynkin diagram ofg. The generalized
2D-affine Toda field system associated tog is defined by the following system ofr = dimh
non-linear PDEs.

2Ωzz̄ =
∑
α∈π∗

dαe2α(Ω)Hα, Ω(z, z̄) ∈ it (2.5)

whereHα ∈ it is the dual ofα respect to the Killing form ofg, anddα are real arbitrary
constants. Solutions of (2.5) are called Toda fields.

If σ denotes the involution ofso(2m + 1,C) determined by the non-compact real form
so(1,2m), we shall see that a 2D-affine Toda field associated to the pair(so(2m+1,C); σ),
locally describe the geometry of harmonic superconformal maps from a Riemann surface
M intoH 2m andH 2m−1.

3. Harmonic sequences

Let T → CPn the tautological line bundle, i.e. the complex line bundle whose fiber at
the pointx ∈ CPn is the complex linex itself. By abuse of notation we denote also by
T the restriction toCHn = {[v] ∈ CPn : q(v, v) < 0}. The hermitian ambient metricq
induces onT a negative definite hermitian metricqT and Hom(T , T ⊥) is equipped with
the corresponding tensor product hermitian holomorphic structure. For such a structure
there is a compatible connectionD on Hom(T , T ⊥) induced by the flat connection on
CHn × Cn+1 → CHn in the following way:

(DXσ)s = πT ⊥(X(σ ◦ s))− σ(πT (Xs)), X ∈ TM,

wheres ∈ C∞(T ) is a local smooth section ofT , σ is a smooth section of Hom(T , T ⊥),
andπT ⊥ is the projection onto theq-orthogonal complementT ⊥ (note thatT ∩ T ⊥ = {0},
hence,πT ⊥ andπT are well defined). There is also a connection-preserving biholomorphic
isomorphism:

T (1,0)CHn
γ→Hom(T , T ⊥), γ (X)s = πT ⊥(Xs), s ∈ C∞(T ),X ∈ TM (3.1)
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which satisfies,

qT ⊗ qT ⊥(γ z, γw) = − c

2
g(z,w), z,w ∈ T (1,0)CHn

wherec < 0 is the holomorphic sectional curvature of the Kähler metricg on CHn. There
is an equivalent description of the geometry ofCPn1 = {[v] ∈ CPn : q(v, v) > 0}. For
details, we refer the reader to [8,9].

A vector sub bundleE ⊂ M × Cn+1 is non-degeneraterespect toq, if Ex ∩ E
⊥q
x =

{0} ∀x ∈ M. WhenE is a line subbundle, i.e. complex 1D, thenE is non-degenerate iff
q(v, v) �= 0 for every 0 �= v ∈ E. Hence, when the baseM is connected, the induced
metricqE is always definite with the same sign onM. Consequently, we call a line sub-
bundleE ⊂ M × Cn+1 positiveor negativeif qE is positive definite or negative definite,
respectively onM.

Recall now the bijective correspondence between smooth mapsϕ : M → CPn and
smooth complex line subbundles ofM × Cn+1 given by

ϕ ↔ E0 = ϕ∗(T ) (3.2)

Under (3.2), a smooth mapϕ : M → CHn corresponds to a non-degenerate negative line
subbundleE ⊂ M × Cn+1. Analogously a smooth mapϕ : M → CPn1 corresponds under
(3.2) to a non-degenerate positive line subbundleE ⊂ M × Cn+1.

Non-degenerate vector subbundlesE ⊂ M × Cn+1 are useful since they have metric-
compatible connections. In fact, for such a vector sub bundle, there are unambiguously
defined orthogonal projectorsπEx : Cn+1 → Ex, x ∈ M, hence, a well defined connection
∇E = πE ◦ d, i.e.

(∇E)Xs = πE(Xs), s ∈ C∞(E),X ∈ TM

Note that the flat connection onM × Cn+1 → M is given by∇Xs = Xsfor s : M → Cn+1

andX ∈ TM.
Given a complex vector bundleV over a Riemann surfaceM with a metric-compatible

connection∇, the well-known theorem of Koszul–Malgrange [8] guarantees the existence
of a unique holomorphic structure onV compatible with∇. A local sections is holomorphic
respect to this structure if and only if∇Xs = 0 for everyX ∈ T (0,1)M.

In what follows, we shall consider every non-degenerate vector sub bundleE ⊂ M×Cn+1

equiped with the induced metricqE and the unique holomorphic structure determined by
∇E = πE ◦ d, via the theorem of Koszul–Malgrange. Hence, a local sections ∈ C∞(E)
is holomorphic if and only if(∂/∂z)s is q-orthogonal toE for any complex coordinate
(U, z) onM. Respect to a complex coordinate we denote(∇E)(∂/∂z) and(∇E)(∂/∂z) simply
by (∇E)

′, and(∇E)
′′, respectively. BeingE is non-degenerate, there is also a well-defined

operatorAE : TM ⊗ E → E⊥ given by

AE(X ⊗ s) =: πE⊥(Xs), s ∈ C∞(E) (3.3)

Notice that with our previous definitionsAE = ∇E⊥ . According to the splitting of the

complexified tangent bundleTMC into (1,0) and (0,1) types, the second fundamental
form decomposes relative to a complex chart(z, U) asAE = A′

E + A′′
E , where

A′
E(s) = πE⊥

(
∂

∂z
s

)
, A′′

E(s) = πE⊥

(
∂

∂z
s

)
(3.4)
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Remark 3.1. We shall regardA′
E andA′′

E simply as bundle mapsE → E⊥. This of course
presupposes working on a specific complex chart but, it is routine calculation to check that
all the constructions that follow, are independent of the choice of such a chart.

Lemma 3.1. Let E be non-degenerate vector subbundle ofM × Cn+1. Then(A′
E)

∗ =
−A′′

E⊥ .

Proof. Let s1 ands2 be smooth local sections ofE andE⊥, respectively. Then, respect
to any complex coordinatez, 0 = q(∂zs1, s2) + q(s1, ∂z̄s2). Hence,q(A′

E(s1), s2) =
−q(s1, A′′

E⊥(s2)) and the Lemma follows. �

Now letϕ : M → CPn be the unique smooth map determined by a non-degenerate line
sub bundleE. Then, ifE is negative,ϕ factors throughCHn and ifE is positiveϕ factors
throughCPn1, respectively.

Proposition 3.2. In either caseϕ is a harmonic map if and only ifA′
E is a holomorphic

section ofHom(E,E⊥). Equivalently, ϕ is harmonic if and only ifA′′
E is antiholomorphic.

Proof. Let us prove the statement whenE is negative since the positive case is analogous.
Let ϕ : M → CHn be the corresponding map. By definitionϕ is harmonic if and only if
tr(∇ dϕ) = 0, where∇ is the connection on Hom(TM,TCHn) determined by the respective
connections∇M and∇ϕ = ϕ∗(∇CHn). Extending dϕ to a complex linear map fromTMC

to TCHn, it follows thatϕ is harmonic if and only if on any complex coordinate(z, U),

∇ϕ
∂z̄

dϕ(∂z) = 0 (3.5)

or, in an equivalent way,

∇ϕ
∂z

dϕ(∂z̄) = 0 (3.6)

Up to identifications (3.4) and (3.1) we get dϕ(∂z̄) = A′′
Eϕ

and dϕ(∂z) = A′
Eϕ

. The pull-back

connection∇ϕ corresponds under (3.1) to∇E . Thenϕ is harmonic if and only ifA′
E is a

holomorphic section of Hom(E,E⊥). This is equivalent to∇′
EA

′
E = 0. In other words,ϕ

is harmonic if and only if

A′
E ◦ ∇′′

E = ∇′′
E⊥ ◦ A′

E (3.7)

�
For a smooth mapf : M → Hn defineϕ0 : M → CPn by ϕ0(x) = [f (x)], i.e. ϕ0(x) is
the complex line inCn+1 determined byf (x). Sinceh(f, f ) = −1, we have

q(λf, λf ) = −|λ|2 < 0, ∀λ ∈ C∗

Hence,ϕ0 factors through the (open) sub manifoldCHn ⊂ CPn.

Proposition 3.3. Let f : M → Hn be a conformal map. Thenf is harmonic iffϕ0 is
harmonic.
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Proof. Let

L0 = {(x, v) ∈ M × Cn+1|v ∈ ϕ0(x)} = ϕ∗
0(T ) ⊂ M × Cn+1

Thenh(f, f ) = −1 impliesq(fz, f ) = q(fz̄, f ) = 0 for any complex coordinate, thus,
∇′′
L0
(f ) = 0. This says thatf is a (global) holomorphic section ofL0. On the other hand,f

being conformal harmonic and non-constant, it satisfiesfzz̄ = q(fz, fz)f on every complex
chart(z, U). This clearly implies that∇′′

L⊥
0

◦A′
L0
(f ) = 0. Thus,A′

L0
is holomorphic, hence,

ϕ0 is harmonic.
Conversely, ifϕ0 = [f ] is harmonic, then (3.7) holds, and sinceh(f, f ) = −1, one gets

∇′′
L⊥

0
◦A′

L0
(f ) = 0. That is,∇′′

L⊥
0
(fz) = 0. Hence,fzz̄ ∈ L0, and there is a (local) complex

function λ such thatfzz̄ = λf . From this, we conclude thatfzz̄ = q(fz, fz)f , so isf
harmonic. �

Let f : M → Hn be a non-constant conformal harmonic map, then by the Proposition
3.3f is a global holomorphic section ofL0 andA′

L0
, A′′

L0
are non-vanishing holomorphic

and antiholomorphic sections of Hom(L0, L
⊥
0 ), respectively. The zeros ofA′

L0
andA′′

L0
are

isolated and there are unique line sub bundles (extending through the zeros)L1, L−1 ⊂ L⊥
0

satisfying

Im(A′
L0
) ⊆ L1, Im(A′′

L0
) ⊆ L−1

Hence,L1 andL−1 are positive line sub bundles ofM× Cn+1 such thatL̄1 = L−1. For, on
any complex chartz : U → C, the complex derivativesfz andfz̄ are local smooth sections
of L1 andL−1, respectively and (outside possibly of a closed subset of isolated points of
U ),

q(fz, fz) = q(fz̄, fz̄) > 0.

In particular,L1 andL−1 are non-degenerate and they can be equipped with holomorphic
structures determined by∇L1 and∇L−1 via the theorem of Koszul–Malgrange. Moreover,
L0 ⊥ L1, andL0 ⊥ L−1 because of

h(f, f ) = −1, h(fz, f ) = 0, h(fz̄, f ) = 0 (3.8)

The orthogonality ofL1 andL−1 follows from the vanishing of the first complex Hopf
quadratic differentialη1 =: hc(fz, fz)dz2.

Summing up these simple facts, we conclude that{L−1, L0, L1} is a set of mutually
q-orthogonal non-degenerate line sub bundles satisfying

L̄0 = L0, L̄1 = L−1 (3.9)

Letϕ1 andϕ−1 : M → CPn be smooth maps which are in one-to-one correspondence with
L1 andL−1, respectively. Then by our preceeding considerationsϕ1 andϕ−1 factor through
the (open) sub manifoldCPn1 ⊂ CPn.

Being both inclusionsi : L1 ↪→ L⊥
0 andj : L0 ↪→ L⊥

1 antiholomorphic, so is the
composition(j ◦A′′

L0
◦ i) : L1 → L⊥

1 . But this is preciselyA′′
L1

, therefore,ϕ1 is harmonic.
Similarly we see thatA′

L−1
is holomorphic.
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We also can prove this more directly by computing,

∂z̄f1 = q(f1, f1)f = −q(f1, f1)

q(f, f )
f (3.10)

On the other hand,fz̄ is a local antiholomorphic section ofL−1. However, if we set

f−1 =:
fz̄

q(fz̄, fz̄)
(3.11)

Thenf−1 is a meromorphic section ofL−1 (i.e. it is holomorphic except on the zero-set of
the denominator) which satisfies

A′
L−1

(f−1) = f, ∂z̄f = − q(f, f )

q(f−1, f−1)
f−1 (3.12)

If A′
L1

does not vanish identically onM then the same is true forA′′
L−1

as a consequence of

(3.9). LetL2 andL−2 be unique line sub bundles ofL⊥
1 defined by

Im(A′
L1
) ⊆ L2, Im(A′′

L1
) ⊆ L−2

Thus,L2 andL−2 are positive, non-degenerate and satisfyL̄2 = L−2 since, on a complex
chart(U, z) we set, (except possibly on the subset ofU wheref1 = 0)

f1 =: fz, f2 =: ∂zf1 − q(∂zf1, f1)

q(f1, f1)
f1. (3.13)

Hence,f2 = A′′
L1
(f1) is a local meromorphic section ofL2 such thatq(f2, f ) = 0, by (3.8)

and conformality off . Notice thatq(f2, f ) = 0 is equivalent to Ref2 and Imf2 ∈ TfH
n.

Then if f2 �≡ 0, q(f2, f2) > 0 on an open dense subset ofU . Hence,L2 is positive
and non-degenerate and the same is true forL−2 consideringf̄1 and f̄2. Therefore,L2
andL−2 have holomorphic structures determined by∇L2 and∇L−2 via the theorem of
Koszul–Malgrange and the corresponding mapsϕ2, ϕ−2 : M → CPn factor throughCPn1.
Arguing as before, we see thatϕ2 andϕ−2 are harmonic maps intoCPn1.

A direct calculation shows that

A′′
L2
(f2) = ∂z̄f2 = −q(f2, f2)

q(f1, f1)
f1 (3.14)

Defining

f−2 =:
−f̄2

q(f̄2, f̄2)
, (3.15)

it easily follows thatf−2 is a local meromorphic section ofL−2 such that

A′
L−2

(f−2) = f−1, A′′
L−1

(f−1) = ∂z̄f−1 = −q(f−1, f−1)

q(f−2, f−2)
f−2 (3.16)

Remark 3.2. Notice thatf2 = α(∂z, ∂z) is the (2,0) part of the complexified second
fundamental form off . In particular,f is totally geodesic if and only iff2 ≡ 0.
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So far, we constructed a set of non-degenerate line sub bundles{Li}2
i=−2 which, as conse-

quence of conformality and formulas (3.8), satisfy orthogonality relations,

Li ⊥ Lj , for 0< |i − j | ≤ 3, and − 2 ≤ i, j ≤ 2 (3.17)

Note however that from (3.17) one can not deduce thatL−2 ⊥ L2.
Thesecond Hopf differentialη2 = hc(f2, f2)dz4 measures the failure ofL−2 andL2 to

beq-orthogonal. By (3.14) it follows thatη2 is a (globally defined) holomorphic complex
quartic differential.

If η2 ≡ 0, we can inductively set forth the process provided that successive Hopf differ-
entialsηk vanish onM. So, after completingk > 2 inductive steps we haveη1 ≡ η2 ≡
· · · ≡ ηk−1 ≡ 0, and on a complex local chart(U, z) in M we have recursively generated
Cn+1-valued maps by the algorithmfj+1 = (∂/∂z)fj − (q((∂/∂z)fj , fj )/||fj ||2)fj , j =
1, . . . , k − 2, which are positive, i.e.||fj ||2 > 0 since by construction and the vanish-
ing of theηj , q(fj , f ) = 0 holds, thus, Refj , Im fj ∈ TfH

n, and sincefj �≡ 0, then
q(fj , fj ) > 0.

These local generatedCn+1-valued mapsfj give rise to a finite sequence of non-degenerate
line sub bundles

L−k, L−k+1, . . . , L−1, L0, L1, . . . , Lk−1, Lk,

all which are positive exceptL0 which is negative, satisfyingq-orthogonality relations,

Li ⊥ Lj , for 0< |i − j | ≤ 2k − 1.

If ηk �≡ 0, then its ceros are isolated since it is a holomorphic 2k-differential which measures
the orthogonality ofL−k andLk.

By Lemma 3.1, there are holomorphic bundle mapsLj

A′
Lj→Lj+1, and antiholomorphic

bundle mapsLj
A′′
Lj→Lj−1 with (A′

Lj
)∗ = −A′′

Lj+1
with A′

Lj
(fj ) = fj+1, andA′′

Lj
(fj ) =

fj−1. Due to the correspondenceLj ↔ ϕj there is a sequence of maps

ϕ−k, . . . , ϕ−1, ϕ0, ϕ1, . . . , ϕk

which are harmonic intoCHn for j = 0, and intoCPn1 if j �= 0.
Note that the finite sequence ofCn+1-valued mapsf−k, f−k+1, . . . , f−1, f = f0,

f1, f2, . . . , fk is locally generated fromf on a complex chart(z, U) by a Gramm–Schmidt
type algorithm namely,



∂fj

∂z
= fj+1 +

(
∂

∂z
log||fj ||2

)
fj

∂fj

∂z̄
= − ||fj ||2

||fj−1||2fj−1

(3.18)

where||fj ||2 = q(fj , fj ) > 0 for |j | �= 0 and||f ||2 = −1. In particular, this shows
directly that eachfj is a local meromorphic ssection of the corresponding line bundleLj .
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In this paper, we distinguish a class of maps caracterized by the non-vanishing of the last
Hopf differential. This motivates the following.

Definition 3.1. Let f : M → Hn be a harmonic (non-constant) map and letm = [(n +
1)/2]. We say thatf is, superconformalif η1 ≡ η2 ≡ · · · ≡ ηm−1 ≡ 0, butηm �≡ 0.

Remark 3.3. Using induction and formulas (3.18), it can be shown that the above definition
does not depend on a particular local complex coordinate. This is left to the reader.A second
class of harmonic mapsf : M → Hn is obtained if one requires thatη1 ≡ η2 ≡ · · · ≡
ηm ≡ 0. These are calledisotropicin the literature, and were studied in [9]. It can be shown
that isotropic harmonic surfaces inHn can be obtained projecting suitable complex curves
into some auxiliar flag space. This will be the matter of a subsequent paper (see [10]).

According to the preceeding definition a harmonic superconformal mapf : M → H2 is
precisely a non-conformal harmonic map, whereas a conformal harmonic mapf : M →
H 4 is superconformal orisotropic, i.e.η2 ≡ 0.

As in the case of the spheresSn in [2], there are two types of superconformal harmonic
maps intoH 2m namely, those which are linearly full intoH 2m, and those which are linearly
full into someH 2m−1 totally geodesic immersed inH 2m.

The second case is simpler and deserves separate attention.

Proposition 3.4. Letf : M → H 2m be a harmonic superconformal map which is linearly
full into some totally geodesic copy ofH 2m−1 immersed inH 2m. Then the sequence of line
bundlesLk of f is periodic of period2m, i.e.Lk+2m = Lk for every integerk.

Proof. By hypothesis, there exist a positive vectorn ∈ R2m+1
1 such thatf is full into

V ∩H 2m, which is a copy ofH 2m−1 totally geodesic immersed intoH 2m whereV = n⊥.
In particular,Lk ⊂ V C for everyk and,Li ⊥ Lj for 0 < |i − j | ≤ 2m − 1. Hence,
L−m ⊥ Lj for j = −m + 1, . . . , m − 1. This forcesL−m = Lm, since by hypothesis
(⊕m−1

k=−m+1Lk)⊕ Lm = V C , hence the 2m-periodicity of the sequenceLk follows. �
This does not occur however with the harmonic superconformal mapsf which are linearly

full into H 2m.
Applying (3.18) and induction we obtain the following formulae which are analogous as

those obtained in [2] forSn.

Proposition 3.5. Letf : M → H 2m be a superconformal harmonic map. Then

f−j = (−1)j+1 f̄j

||fj ||2 , for 0 ≤ j ≤ m (3.19)

Here, we consider the following question: which invariants determine a superconformal
harmonic map up to ambient isometries?

Theorem 3.6. Letf, f̂ : M → H 2m be harmonic superconformal maps having the same
induced metrics and the samemth Hopf differentials. Then there is an isometryΦ ofH 2m

such thatΦ ◦ f̂ = f .
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Proof. We assume thatf andf̂ are full and introduce (globally defined) real formsγj =
τj |dz|2 andγ̂j = τ̂j |dz|2, whereτj = ||fj+1||2||fj ||−2 andτ̂j = ||f̂j+1||2||f̂j ||−2. Since
by hypothesisf ∗h = f̂ ∗h we haveγ0 = γ̂0, andγ−1 = γ̂−1. As a consequence of the
Gramm–Schmidt type algorithm (3.18) on a complex chart(U, z) we have

∂2

∂z∂z̄
log||fj ||2 = τj − τj−1, |j | = 0, . . . , m

From this, we deduce thatγ−1 andγ0 determineγj for |j | = 1, . . . , m. In particular,
τj = τ̂j for |j | = 0,1, . . . , m, hence,||fj || = ||f̂j || for |j | = 0,1, . . . , m.

On the other hand, by hypothesis we know that

q(fi, fj ) = q(f̂i , f̂j ) = 0,0 < |i − j | ≤ 2m

q(fi, f̄i) = q(f̂i ,
¯̂
f i) = 0, i = 1, . . . , m− 1

q(fm, f̄m) = q(f̂m,
¯̂
f m)

But {fj , f̄j : j = 0, . . . , m} spansC2m+1. Hence, there is a matrixA = A(z, z̄) ∈
SU(1,2m) such that

f̂j = Afj ,
¯̂
f j = Af̄j , j = 0, . . . , m

Thus,A = Ā and using (3.18), we see that(∂/∂z)A = (∂/∂z̄)A = 0, i.e.A is a constant
matrix in SO(1,2m). One can suppose (composing with isometries ofH 2m if necessary)
that there is a pointp0 ∈ M such thatf (p0) = g(p0) = e0, the first vector of the canonical
basis. In particular,Ae0 = e0 thusA ∈ SOo(1,2m). �

4. Primitive lifts

4.1. The flag domain

LetFm be the set of ordered sequences(L0,L1, . . . , Lm),Lm+1 of mutuallyq-orthogonal
complex lines inC2m+1, whereL0 is the complexification of a negative line inR2m+1

1 ,
and Lj ; j = 1, . . . , m are positive complex lines. The pseudo-orthogonal Lie group
SOo(1,2m) acts transitively onLm in the usual way

g.(L0,L1,L2, . . . , Lm) = (gL0, gL1, gL2, . . . , gLm)

Let L0
0 = Ce0 andL0

k = C(e2k−1 − ie2k), whereek is the standardk + 1-basis vector of
C2m+1. Then the isotropy of the pointo = (L0

0,L
0
1, . . . , L

0
m) ∈ Fm is themD compact

torus

T = diag(1, R(ϕ1), R(ϕ2), . . . , R(ϕm))|ϕk ∈ R}; R(ϕ) =
(

cosϕj − sin ϕj

sin ϕj cosϕj

)
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Thus, we may identifyFm with the quotientSOo(1,2m)/T , and there is a natural projec-
tion P : Fm → H 2m defined as follows. GivenL = (L0,L1, . . . , Lm) ∈ Fm, we may
pick q-unit basis vectorsVj ∈ Lj , j = 1, . . . , m and putVj = (1/

√
2)(v2j−1 − iv2j ),

for j = 1, . . . , m andv0, the unique vector inR2m+1
1 determined by the following two

conditions:{
h(v0, v0) = −1

{v0, v1, v2, . . . , v2m} is a positively orientedh-orthonormal basis ofR2m+1
1

Let P(L) = v0 ∈ H 2m. Thus,P sends an element [F ] ∈ Fm to the 0th columnF0 of
F ∈ SOo(1,2m). According to this definition, a pointL ∈ Fm is determined byP(L) and
L1,L2, . . . , Lm−1.

The Killing form of so(1,2m) induces aSOo(1,2m)-invariant pseudo-Riemannian met-
ric onFm, namely,

〈X, Y 〉 = 1
2tr(X.Y ), X, Y ∈ To(Fm)

With this metric the projectionP : Fm → H 2m becomes a (pseudo)-Riemannian submer-
sion since the metrich onH 2m is given byh(X, Y ) = (1/2)tr(X.Y ), forX, Y ∈ Te0(H

2m).
There is also a 2m-symmetric structure onFm defined as follows. Lett be the Lie algebra

of T :

t = {diag(0, θ(u1), . . . , θ(um))|uk ∈ R}, θ(u) =
(

0 −u
u 0

)

Set

σj [diag(0, θ(u1), . . . , θ(um))] = iuj .

Then as positive simple roots we takeπ+ = {α1, α2, . . . , αm}, whereα1 = σ1, α2 =
σ2 − σ1, . . . , αm = σm − σm−1, andµ = σm + σm−1 is the highest root.

Now pick elementsZk ∈ itm so thatαj (Zk) = δjk and putZ = 1
2m

∑m
k=1Zk. Thenτ =

Ad(exp2π iZ) is an automorphism ofso(2m+1,C) such thatτ2m = Id. It is easily checked
that τ preserves the real formso(1,2m), and if we denote also byτ the corresponding
automorphism induced onSOo(1,2m) (note thatτ is determined up to conjugation by an
element ofSOo(1,2m)), thenτ(T ) ⊂ T and henceτ determines an isometryτ : Fm → Fm
of order 2m.

We computeZk = i diag(0, θ(0), θ(0), . . . , θ(0), θ(−1)k, . . . , θ(−1)). From this one
can write down the 2m-symmetryτ = Ad(2π iZ) explicitly,

τ = Ad

[
diag

(
1, R

(π
m

)
, R

(
2π

m

)
, . . . , R

(
(m− 1)π

m

)
, R(π)

)]
(4.1)

where,R(ϕ) =
(

cosϕ − sin ϕ

sin ϕ cosϕ

)
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Example 4.1. Note that form = 2 and 3 the symmetryτ is given, respectively by

Ad




1 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 −1 0

0 0 0 0 −1




; Ad




1 0 0 0 0 0 0

0
1

2
−

√
3

2
0 0 0 0

0

√
3

2

1

2
0 0 0 0

0 0 0 −1

2
−

√
3

2
0 0

0 0 0

√
3

2
−1

2
0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1




Let ν = eiπ/m. We have, thus, a direct sum decomposition

so(2m+ 1,C) = ⊕j∈Z2mmj , mj = {X ∈ so(2m+ 1,C)|τ(X) = νjX}
Recall now from (2.2) the conjugation atomorphismσ : so(2m+ 1,C) → so(2m+ 1,C)
respect to the non-compact real formso(1,2m). We need the following.

Proposition 4.1. The automorphismsτ andσ commute, i.e.σ ◦ τ = τ ◦ σ .

Proof. Easily follows from the definitions ofτ andσ and is left to the reader. �

As a consequence theνj -eigenspacesmj satisfy

[mj ,mk] ⊂ mj+k, j, k ∈ Z2m σ(mj ) = m−j . (4.2)

Note that sincem0 = tC, σ(m0) = m0.
Moreover, eachmk is Ad(T )-invariant and determines anSOo(1,2m)-invariant subbun-

dle [mk] of the complexified tangent bundleT (Fm)C of Fm, namely,

[mk](xT) = Ad(x)(L̄ ·mk · L), x ∈ SOo(1,2m),

whereL = diag(i,
︷ ︸︸ ︷
1, . . . , 1

2m

). Hence, we have the following identification

T (Fm)
C = ⊕k∈Z2m [mk]

On the other hand, we know from the general theory [6] thatm1 decomposes into a direct
sum,

m1 =
m∑
k=0

gαk , (4.3)
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wheregαk ⊂ so(2m + 1,C) is theαk-root space, andα0 = −µ. From this we obtain the
following.

Lemma 4.2. The subspacem1 ⊂ so(2m+1,C) consists of matricesX having the following
form,

X =




0 Q1 0 0 · · · 0

−QT
1 02 Q2 0 · · · 0

0 −QT
2 02 Q3 · · · 0

0 0 −QT
3 02 . . .

...

...
...

...
...

0 · · · · · · 0 02 Qm

0 · · · · · · 0 −QT
m 02




(4.4)

where

Q1 = a1(−1 , i), Qj = aj

(−1 i

−i −1

)
, j = 1, . . . , (m− 1);

Qm =
(
a b

ia ib

)
, aj , a, b ∈ C

According to [6] we introduce the following.

Definition 4.1. An elementX ∈ m1 is calledcyclic if a, b, a1, b2, . . . , am−1, bm−1 ∈
C − {0} and|a| + |b| > 0.

We refer the reader to Lemma 2.1 of [6] for the characterization of cyclic elements in terms
of the homogeneous generators of the ring of Ad(SO(2m+ 1,C))-invariant polinomials.

Definition 4.2. A mapψ : M → Fm is calledτ -primitive if dψ(T (1,0)M) ⊂ [m1], and
contains a cyclic element, (i.e. dψ(T (1,0)M) is not contained in any sub bundle obtained
fromm1 by omitting one of the direct summands in (4.3)).

Given a super conformal harmonic mapf : M → H 2m, we may construct a liftf̂ :
M → Fm as follows. PutL0 = L0,Lj = Lj for j = 1, . . . , (m − 1), and letLm be
determined by the conditionP(L0,L1, . . . , Lm−1,Lm) = f . ThenLm lives inLm⊕L̄m =
[⊕m−1

−m+1Lj ]
⊥q and define

f̂ = (L0,L1, . . . , Lm−1,Lm) (4.5)
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Theorem 4.3. Let f : M → H 2m be a harmonic map. Iff is super conformal then the
lift f̂ : M → Fm given by(4.5) is primitive. Conversely, if ψ : M → Fm is primitive, then
f = P ◦ ψ : M → H 2m is a super conformal harmonic map such thatf̂ = ψ .

Proof. Assume that the harmonic mapf is superconformal. Let{Lj }mj=−m, be the sequence
of non-degenerate line bundles off , andfj the corresponding local section ofLj , gener-
ated on a local complex chart(U, z) by algorithm (3.18). DefineR2m+1-valued functions
F1, . . . , F2m onU by


fj = 1√

2
||fj ||(F2j−1 − iF2j ), j = 1, . . . , (m− 1)

fm = aF2m−1 − ibF2m, with |F2m−1||2 = ||F2m||2 = 1
(4.6)

wherea andb are real valued functions onU such thatηm|U = (a2 − b2)dz2m, hence
a2 − b2 �≡ 0 onU and||fm||2 = a2 + b2. We can assume that||fj || > 0, j = 1, . . . , m
onU sincefj vanish only at isolated points.

DefineF = (f, F1, F2, . . . , F2m−1, F2m). Then by (4.6) and (3.18), it follows thatF is
O(1,2m)-valued onU and we assume thatF is SOo(1,2m)-valued onU . We have

F · o = (Cf,C(F1 − iF2), . . . , C(F2m−1 − iF2m))

Put

L0 = Cf, Lj = C(F2j−1 − iF2j ), j = 1, . . . , m (4.7)

Note thatLm �= Lm, butLm ⊂ Lm⊕Lm. Definef̂ = (L0,L1, . . . , Lm), hence,F ·o = f̂ ,
i.e. F is a frame off̂ onU .

Now using (4.6) and (3.18) we see thatF satisfies,

F−1Fz = L̄(A0 + A1)L,

whereA1 ∈ m−1, andA0 ∈ m0.
In particular,f̂z = F · L̄ · A1L ∈ [m1](F · o) = Ad(F)(L̄ · m1 · L) whereA1 ∈ m1 is

cyclic by (4.6) and by our assumption||fj || > 0 onU for j = 1, . . . , m. This shows that
f̂ is primitive.

Conversely, letψ : M → Fm be a primitive map,ψ = (L0,L1, . . . , Lm), and setf =
P ◦ψ . Let(U, z) be a complex chart inM, andF = (F0, F1, . . . , F2m) : U → SOo(1,2m)
a local frame ofψ then,

L0 = Cf, Lj = C(F2j−1 − iF2m), j = 1, . . . , m

In particular,F is also a local frame forf , and beingψ primitive, F−1Fz = L̄(A0 + A1)L

with A0 ∈ m0 andA1 ∈ m1. Therefore,A1 has the form (4.4) wherea1, . . . , am−1, a, b, are
complex functions onU vanishing only at isolated points. From the isotropy ofL1 follows
thatf is conformal and, from the structure ofA1 we deduce that∇′′

L⊥
0

◦A′
L0
(f ) = 0, hence,

f : M → H 2m is harmonic. This also follows from the general theory in [7] sincef is
covered by a primitive map.
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By rotating on the normal plane spanned by{F1, F2} we can getfz = (||fz||/
√

2)
(F1 − iF2) or a1 = i||fz||/

√
2, (note that such a rotation leaves the complex lineL1 =

C(F1 − iF2) unchanged). Using the structure ofA1 it is easy to check thatf1 =: fz is a
holomorphic local section ofL1 and thatf2 =: (∂/∂z)f1 − (q((∂/∂z)f1, f1)/||fz||2)f1
defines an holomorphic local section ofL2. Performing a rotation on the normal plane
spanned by{F3, F4} if necessary, we can get (keeping the complex lineL2 unchanged),
f2 = (||f2||/

√
2)(F3 − iF4), anda2 = ||f2||/2||f1||. Notice thatη2 ≡ 0 sinceL2 is

isotropic. Continuing this way and rotating appropriately (if needed) the vectors{F2j−1,

F2j }, we generate inductively local holomorphic sectionsfj=(||fj ||/
√

2)(F2j−1 −
iF2j ) ∈ Lj , and matrix coefficientsaj = ||fj+1||/2||fj || for j = 1, . . . , (m − 1).
Finally settingfm = (∂/∂z)fm−1 − (q((∂/∂z)fm−1, fm−1)/||fm−1||2)fm−1, and using the
structure of the matrixA1 once more, we see that the last coefficients inA1 are
given by

a = ||fm−1||−1

√
2

α, b = i
||fm−1||−1

√
2

β,

whereα, β are real functions onU such thatfm = αF2m−1− iβF2m with α2−β2 vanishing
only at isolated points. DefineLm = C · fm. After a straightforward calculation, one con-
cludes thatfm is a holomorphic section ofLm, andηm = (α2 −β2)dz2m is a non-vanishing
holomorphic 2m-differential onU . Moreover,Lm ⊂ Lm ⊕Lm. All this clearly says thatf
is a superconformal harmonic map intoH 2m satisfyingψ = f̂ . �

4.2. Special frames

The proof of the Theorem 4.3 suggests that we may use the information contained in the
harmonic sequence of a superconformal minimal mapf : M → H 2m to construct special
adapted frames off .

In fact, let f : M → H 2m be superconformal harmonic, andz : U → C a local
complex coordinate on a simply connected open setU ⊂ M, then using (3.18) we generate
positiveC2m+1-valued{fj }|j | = 1, . . . , m. Then by (3.18),hc(fm, fm) is a non-vanishing
holomorphic function onU and we may choose the local coordinatez so thathc(fm, fm) =
1 onU , hencez is unique up to arbitrary translations and multiplication by a 2m root of
unity. A proof of this fact is given in [6]. We introduce real functionsuj onU by ||fj || =
euj (recall that||f0||2 = −1) andR2m+1-valued functionsF1, . . . , F2m−1, F2m onU by
setting

fj = euj√
2
(F2j−1 − iF2j ), j = 1,2, . . . , m− 1

fm = coshum(F2m−1)− i sinhum(F2m)

From (3.18) it follows thatF = (f, F1, . . . , F2m) is SO(1,2m)-valued onU . According
to (4.1) the change of the frameF onU is expressed by

Fz = FL̄ · A · L (4.8)
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whereA is given by

A =




0 Q1 0 0 · · · 0

−QT
1 θ(−iu1) Q2 0 · · · 0

0 −QT
2 θ(−iu2) Q3 · · · 0

0 0 −QT
3 θ(−iu3) · · · ...

...
...

...
...

0 · · · · · · 0 θ(−ium−1) Qm

0 · · · ... 0 −QT
m θ(−ium)



, (4.9)

Q1 = i
eu1

√
2
(1 − i), Qj = −euj+1−uj

2

(
1 −i
i 1

)
for j = 1, . . . , (m− 2),

Qm = −e−um−1

√
2

(
coshum −i sinhum

i coshum sinhum

)

SettingΩ = i diag(0, θ(−u1), θ(−u2), . . . , θ(−um)) ∈ it, thenA can be decomposed
as follows:

A = Ωz + eΩMe−Ω ∈ m0 ⊕m1, (4.10)

where

M =




0 M1 0 0 · · · 0

−MT
1 02 M2 0 · · · 0

0 −MT
2 02 M3 · · · 0

0 0 −MT
3 02

...

...
...

. . .

0 ... ... 02 Mm

0 ... · · · −MT
m 02




∈ m1, (4.11)

where

M1 = 1√
2
(i,1), Mj = 1

2


−1 i

−i −1


 , j = 1, . . . , (m− 1),

Mm =

−1 0

−i 0


 (4.12)
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Among (local) frames of a primitive mapψ : M → Fm we distinguish a special kind of
frames. Following [6] we call a local frameF : U → SOo(1,2m) a Toda frame if there is
a complex coordinatez : U → C and a smooth mapΩ : U → it such that

F−1Fz = Ωz + Ad(eΩ)L̄ · M · L ∈ m0 ⊕ L̄ ·m1 · L (4.13)

Note thatL̄ ·H · L = H ∀H ∈ m0.

Remark 4.1. Using harmonic sequences we have produced a local Toda frame for a
τ -primitive mapψ : M → Fm as can be seen from Eq. (4.10).

A Toda frameF is unique up to multiplication by an element of the compact torus
T ⊂ O(1,2m).

4.3. Integrability conditions

Here, we determine the integrability conditions for the existence of a (local) Toda frame
of a primitive mapψ : M → Fm. To this end we decompose the matrixM ∈ m1 into a sum
of root matricesXj ∈ so(2m+ 1,C) defined by

X1 = 1√
2




0 i 1 ...

−i 0 0 · · ·
−1 0 0 · · ·
... 0


 , Xj = 1

2




0

. . .

02 Pj ...

−P T
j 02 ...

. . .



,

j = 2, . . . , m,

where

Pj = −E2j−3,2j−1 + iE2j−3,2j − iE2j−2,2j−1 − E2j−2,2j ,

02 represents the 2× 2-zero matrix andEα,β the square matrix with 1 in the(α, β) place
and zeros outside. The last matrixX0 is defined by

X0 = 1

2




0

. . .

02 P0

−P T
0 02


 ,

P0 = −E2m−3,2m−1 − iE2m−3,2m − iE2m−2,2m−1 + E2m−2,2m

Note thatCXj = gαj is the root space corresponding to the simple rootαj . Also M =
X0 +X1 + · · · +Xm holds. Moreover,{

[Xj , σ (Xj )] = tr(Xj · σ(Xj )) ·Hj

[Xk, σ (Xl)] = 0, for k �= l
(4.14)
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whereHj ∈ it are given by

H1 = 1
2i diag(0, θ(−1),02, . . . , 02)

Hj = 1
2i diag(0,02, . . . , θ(1), θ(−1)︸ ︷︷ ︸

j

,02, . . . , 02), j = 2, . . . , m

H0 = 1
2i diag(0,02, . . . , 02, θ(1), θ(1)︸︷︷︸

m

)

(4.15)

We leave for the reader to check thatHj ∈ it is dual toαj respect to trX · Y .
Our choice of matricesXj is such that

dj := tr(Xj · σ(Xj )) =
{

2, for j = 1

−2, for j = 0,2, . . . , m
(4.16)

From (4.16) and (4.17) we obtain the following.

Lemma 4.4. Let L̄ · A ·L = F−1Fz whereA is the matrix (4.10) andB = σ(A). Then the
integrability condition [A,B] = Az̄ − Bz for the existence of a Toda frameF is equivalent
to

2Ωzz̄ =
m∑
j=0

dj e2αj (Ω)Hj (4.17)

whereΩ = i diag(0, θ(−u1), θ(−u2), . . . , θ(−um)) ∈ it.

Proof. Ad(eΩ)M = ∑
α∈π∗ eαj (Ω)Xj by definition ofXj . Analogously we see that

σ(Ad(eΩ)M) = Ad(e−Ω)σ(M) = ∑
α∈π∗ eαj (Ω)σ (Xj ). From this and (4.16) the Lemma

follows. Note thatσ(gαj ) = gα−j . �

In terms of the real functionsuj Eq. (4.17) is equivalent to the following non-linear
elliptic system



2u1zz̄ = e2(u2−u1) + e2u1

2ujzz̄ = e2(uj+1−uj ) − e2(uj−uj−1), j = 2, . . . , m− 2

2u(m−1)zz̄ = e−2um−1 cosh 2um − e2(um−1−um−2)

2umz̄z = −e−2um−1 sinh 2um

(4.18)

Theorem 4.5. Let (U, z) be a complex coordinate ofM withU ⊂ M a simply connected
open subset and letΩ : U → it be a smooth map. ThenEq. (4.13)has a real solution
F ∈ SOo(1,2m) if and only if the fieldΩ = i diag(0, θ(−u1), θ(−u2), . . . , θ(−um))
satisfies the 2D-affine Toda fieldEqs. (4.17).

In this caseψ = π ◦ F : U → Fm is τ -primitive andf (F ) is a Toda frame ofψ .
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Proof. The integrability condition for the existence of a Toda frameF is (∂/∂z)(∂/∂z̄)F =
(∂/∂z̄)(∂/∂z)F which by (4.8) is equivalent to [A,B] = Az̄ − Bz. This in turn is equivalent
to system (4.18). The final statement follows from (4.10). �

Remark 4.2. Eq. (4.17) with real arbitrary constantsdj is called by some authors the gener-
alized (elliptic) 2D-affine Toda field associatedso(2m+1,C) [11]. Our choice of constants
dj in (4.16) depend essentially on the matricesXj and the conjugation authomorphismσ
(2.2) determined by the non-compact real formso(1,2m). For this reason we call (4.17)
the 2D-affine Toda field associated to the pair(so(2m+1,C); σ). Notice that the 2D-affine
Toda fields considered in [6] are in fact associated to a pair(g, k) whereg is a complex
simple Lie algebra andk is a compact real form ofg.

Remark 4.3. Note that a Toda frameF with field Ω for which um ≡ 0 gives rise to a
primitive mapψ which projects onto a superconformal harmonic mapf which is full into
a totally geodesicH 2m−1 ⊂ H 2m.

5. Existence

Here, we apply the Adler–Kostant–Symes integration scheme to construct finite type
primitive mapsψ : H 2 → Fm and harmonic superconformal mapsf : H 2 → H 2m.
The main reference here is the expository article by Burstall and Pedit [7]. We intro-
duce the standard ingredients of the general theory in order to keep the paper self-
contained.

Given a primitive mapψ : M → Fm, there is a liftF : M̃ → SOo(1,2m) defined on the
universal covering space ofM. Pulling back the left Maurer Cartan formθ of SO(2m+1,C)
by the frameF, one obtains theso(2m+ 1,C)-valued one-formα = F−1 dF on M̃ which
splits into(1,0) and(0,1) types,

α =
α′

1︷ ︸︸ ︷
A′

1 dz+
α0︷ ︸︸ ︷

(A0 dz+ Ā0 dz̄)+
α′′

1︷ ︸︸ ︷
A′′

1 dz̄

whereA0 = Ā0 : M̃ → m0, A′
1 : M̃ → m1, with A′

1 cyclic andA′
1 = σ(A′′

1). The
compatibility (or integrability) condition for the existence of such frame is given by the so
called zero curvature condition or Murer–Cartan equation forF:

dα + 1
2[α ∧ α] = 0

In terms of the one-formα0, α
′
1, α

′′
1 the equation above decomposes into

dα0 + 1
2[α0 ∧ α0] = −[α′

1 ∧ α′′
1]; dα′

1 + [α0 ∧ α′
1] = 0 (5.1)

The key point is that these equations may be reinterpreted by introducing a complex spectral
parameterλ ∈ S1 in α, namely,

αλ =: λα′
1 + α0 + λ−1α′′

1, λ ∈ S1
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Thenα = α′
1 + α0 + α′′

1 satisfies (5.1) if and only if the loop of one-formαλ satisfies

dαλ + 1
2[αλ ∧ αλ] = 0 ∀λ ∈ S1 (5.2)

Integrating (5.2) on the simply connected̃M, we obtain anS1-loop of framesFλ : M̃ →
SOo(1,2m) such that

F−1
λ dFλ = αλ, Fλ(p0) = Id ∀λ ∈ S1

wherep0 ∈ M̃ is some fixed point.
Hence, one gets anS1-loop of τ -primitive mapsψλ = π ◦ Fλ : M̃ → Fm with ψ1 = ψ

whereψλ(p0) = ψ(p0)∀λ ∈ S1. In particular, this shows that primitive maps and hence
harmonic superconformal maps exist inS1-loops that are called associated families in [7].

In order to get a different perspective of the above situation, we introduce here some
Loop algebras and groups following [7]. Letg be the non-compact real formso(1,2m)
of the complex simple Lie algebraso(2m + 1,C). Recall from (2.1) and (2.2) thatgC =
so(2m+ 1,C). The twisted complex loop algebra is defined by

ΛgCτ = {ξ : S1 → gC : ξ(eiπmλ) = τξ(λ)∀λ ∈ S1}
There is also the real form ofΛgCτ determined byg:

Λgτ = {ξ ∈ ΛgCτ : ξ(λ) ∈ g∀λ ∈ S1}
Any loop ξ ∈ ΛgCτ has a Laurent expansionξ(λ) = ∑

j∈Z ξjλ
j with ξj ∈ mj , i.e. such

thatτξj = νj ξj (ν = eiπ/m). Givenξ ∈ ΛgCτ its conjugate respect to the real formΛgτ is
defined by

σ(ξ)(λ) =
∑

σ(ξn)λ̄
n,

whereσ is the conjugation authomorphism ingC determined byg, see (2.2). In particular,∑
k∈Z

ξkλ
k ∈ Λgτ iff σ(ξk) = ξ−k k ∈ Z

Note that a mapξ : S1 → so(2m+ 1,C) is inΛgτ iff it satisfies the following conditions:

σ(ξ(λ)) = ξ(λ)∀λ ∈ S1

τ(ξ(λ)) = ξ(νλ)∀λ ∈ S1 (5.3)

The first one is called the reality condition determined by the non-compact real form
so(1,2m).

Define a subalgebraΛ−gCτ = {ξ ∈ ΛgCτ : ξ = ∑
k≤0 ξkλ

k, ξ0 ∈ t}, then one has an
orthogonal decomposition into complementary (closed) subalgebras,

ΛgCτ = Λgτ ⊕Λ−gCτ
with respect to the weakly non-degenerate invariant real symmetric bilinear form

(ξ, η) = 1
2 Im

∫
S1

tr ξ · η, ξ, η ∈ ΛgCτ
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LetπK : ΛgCτ → Λgτ be the projection determined by( , ) and the complementΛ−gCτ .
ThenπK is given by

πK(ξ) = ξ (−) + ξ0
t + σ(ξ (−)),

whereξ (−) = ∑
j<0 ξjλ

j ∈ Λ−gCτ .
For a fixedd ∈ N such thatd ≡ 1 mod(2m) consider the function,

f (ξ) = 1
4

∫
S1
λ1−d tr ξ2 = f1(ξ)+ if2(ξ), (5.4)

Then projecting the gradients offi on Λgτ , one obtains two Hamiltonian vector fields
X1, X2 onΛgτ .

The truncated Laurent polinomial loops of longituded form a finite dimensional subspace
of Λgτ , namely,

Λd = {ξ ∈ Λgτ : ξn = 0∀|n| > d}
Restrictingf1, f2 toΛd , then forξ ∈ Λd ,

X1 = [ξ, πK(∇ξ f2)]

X2 = [ξ, πK(∇ξ f1)],
(5.5)

where∇ξ f1 = λ1−dξ,∇ξ f2 = iλ1−dξ are the gradients off1, f2 respect to( , ), respec-
tively. Sincefi Poisson-commute [7], their commutator vanish, i.e. [X1, X2] = 0. Note
that if d ≡ 1 mod(2m) then the gradients∇fj defined above areΛgCτ -valued.

Both commuting Hamiltonian vector fieldsXi considered above are of Lax form, i.e:
X(ξ) = [ξ, E(ξ)]. Then if ξ(t) is any integral curve of such anX, we have

d

dt
(ξ, ξ) = 2

(
d

dt
ξ, ξ

)
= 2([ξ, E(ξ)], ξ) = −2(E(ξ), [ξ, ξ ]) = 0

Note that the bilinear form (5.1) is non-definite onΛgτ and, thus, onΛd . Hence,ξ(t)
evolves in a generic non-euclidean sphere contained inΛd and, thus, may not be defined
for everyt ∈ R.

Since [X1, X2] = 0 their flowsXs
1 andXt

2 commute,

Xs
1 ◦Xt

2 = Xt
2 ◦Xs

1

for s and t where they are defined. Fixed an initial conditionξo ∈ Λd , defineξ : U ⊂
R2 → Λd by

ξ(s, t) = Xs
1 ◦Xt

2(ξo),

for all (s, t) in a suficiently small open neighbourhood of(0,0). Then one verifies that
ξ(s, t) satisfies

dξ = X1(ξ)ds +X2(ξ)dt, ξ(0,0) = ξo
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Now we define commuting complex vectorfieldsV and σ(V ) on ΛC
d by X1 = V +

σ(V ),X2 = i(V − σ(V )), hence,

V (ξ) =
[
ξ,
ξd−1

2
+ λξd

]
σ(V )(ξ) =

[
ξ,
ξ−d+1

2
+ λ−1ξ−d

] (5.6)

Introducing the complex variablez = s + it and applying the above argument to it follows
that the ODE’s system:



∂

∂z
ξ = V (ξ),

∂

∂z
ξ = σ(V )(ξ),

ξ(0,0) = ξ◦,

(5.7)

has a unique solutionξ : U0 → Λd for any given initial conditionξ◦ ∈ Λd , whereU0 ⊂ R2

is an open neighborhood of(0,0) ∈ R2 which we can assume to be connected and simply
connected.

With this solutionξ theΛ1-valued one-form

αλ = λξd dz+ 1
2(ξd−1 dz+ ξ−d+1 dz̄)+ λ−1ξ−d dz̄,

satisfies the zero curvature condition or Maurer-Cartan equation:

dαλ + 1
2[αλ ∧ αλ] = 0∀λ ∈ S1 (5.8)

Thus, integrating on the simply connectedU0 we get anS1-loop of framesFλ : U0 →
SOo(1,2m) with F−1

λ dFλ = αλ ∀λ ∈ S1 and one can arrange the constants of integration
so thatFλ(0,0) = Id ∀λ ∈ S1.

5.1. Integration of the Toda equations

Using the above construction it is possible to get solutions of the 2D-affine Toda fields
(4.17) associated to the pair(so(2m+ 1,C); σ) as follows.

Inspecting the ODE system (5.7) we see that theλd−1 andλd terms satisfy

∂

∂z
ξd−1 = [ξd, ξ−d ],

∂

∂z
ξd = 1

2
[ξd, ξ1−d ],

∂

∂z
ξd = −1

2
[ξd, ξd−1]. (5.9)

In particular, them0 part ofF−1 dF is given by

A0 = ξ−d+1

2
dz̄+ ξd−1

2
dz

Hence,

A0 = i
ξ−d+1

2
dz̄− i

ξd−1

2
dz
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Now by (5.9) we haved ∗ A0 = 0. Therefore, the equation

dΩ = i ∗ A0,

Ω(0,0) = 0
(5.10)

has a smooth solutionΩ : U0 → it and, hence,Ωz = ξd−1/2,Ωz̄ = −ξ−d+1/2 hold on
U . If we choose the initial conditionξ◦ in (5.7) so thatξ◦

d = M ∈ m1, then Ad(eΩ)M and
ξd both satisfy the same system of ODE’s

Yz = −1
2[Y, ξd−1]

Yz̄ = 1
2[Y, ξ−d+1]

Y (0,0) = M

(5.11)

Therefore,ξd = Ad(eΩ)M on U0. Thus, each member of the loopS1 � λ �→ Fλ

obtained by integration of (5.8) is a Toda frame for theτ -primitive mapψλ = π ◦
Fλ : U0 → Fm. In particular,Ω : U0 → it is a solution of the 2D-affine Toda field
(4.17).

Remark 5.1. Note that since [M, σ (M)] �= 0, the null mapΩ ≡ 0 can not be neither a
solution of (4.17) nor (5.10).

According to the Riemann mapping theorem, the connected simply connected open neigh-
borhoodU0 of (0,0) is either the complex planeC or is conformally equivalent to the
open unit discD = {z : |z| < 1}. By applying an earlier result of Sattinger it is possi-
ble to rule out theU0 = C possibility at least for, namely, harmonic conformal maps of
U0 → Hn.

Theorem 5.1. Let M be a connected non-compact Riemann surface, and f : M →
Hn (n > 2) be a minimal immersion, i.e. a harmonic conformal map. Then the uni-
versal covering spaceM̃ of M is conformaly equivalent to the open unit discD1 =
{z : |z| < 1}.

In particular, the theorem is true for minimal superconformal immersions of connected
surfaces intoHn.

Proof. Let us suppose that̃M is conformaly equivalent toC. Thenf̃ = f ◦ π : C → Hn

is minimal, whereπ : C → M is the covering map. LetK(g) be the Gaussian curvature of
the induced metricg = f̃ ∗h. Respect to the global isothermal coordinatez on C, we have
g = e2u dz dz̄ for some smooth functionu defined on the whole complex plane. In terms
of u the curvature is given byK(g) = −(1/2)4e−2u(2uzz̄). Hence, the globally defined
smooth functionu must satisfy

∆u = −K(g)e2u,
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where∆ = ∂2/∂x2 + ∂2/∂y2. Sincef̃ is conformal harmonic, the Gaussian curvature
satisfiesK(g) ≤ −1. Under such conditions Sattinger [13] proved that there is no solution
u of the above equation defined on the whole complex plane. �

Recall the Poincaré model ofH 2, (D1; ds2 = 4|dz|2/(1−|z|2)2). Using Theorem 5.1 we
may (modulo conformal transformations of the plane) summarize the results of this section
in the following.

Theorem 5.2. Letm ≥ 2andd ≡ 1 mod(2m). Recall the commuting vector fieldsV, σ(V )
defined onΛd by (5.6).

(i) There exists a unique solutionξ : H 2 → Λd of the ODE’s system(5.7) with initial
conditionξ(0,0) = ξ◦ ∈ Λd , with ξ◦

d = M ∈ m1.
(ii) TheΛ1-valued one-form defined in terms of the solutionξ of (i),

αλ = λξd dz+ 1
2(ξd−1 dz+ ξ−d+1 dz̄)+ λ−1ξ−d dz̄

satisfies the Maurer–Cartan equationdαλ + (1/2)[αλ ∧ αλ] = 0∀λ ∈ S1. Hence,
integration ofF−1

λ dFλ = αλ, Fλ(0,0) = Id ∀λ ∈ S1 gives rise to anS1-loop of
framesFλ : H 2 → SOo(1,2m) for the primitive mapsψλ = π ◦ Fλ : H 2 → Fm,
and consequently this produces anS1-loop of minimal superconformal immersions
fλ = P ◦ ψλ : H 2 → H 2m.

(iii) TheFλ are Toda frames of the primitive mapsψλ = π ◦ Fλ : H 2 → Fm. Thus, there
exist a solutionΩ : H 2 → it to the 2D-affine Toda fieldEq. (4.17).
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